Polarized actin bundles formed by human fascin-1: their sliding and disassembly on myosin II and myosin V in vitro. 2003

Ryoki Ishikawa, and Takeshi Sakamoto, and Toshio Ando, and Sugie Higashi-Fujime, and Kazuhiro Kohama
Department of Pharmacology, Gunma University School of Medicine, Maebashi, Japan. ryoki1@med.gunma-u.ac.jp

Fascin-1 is a putative bundling factor of actin filaments in the filopodia of neuronal growth cones. Here, we examined the structure of the actin bundle formed by human fascin-1 (actin/fascin bundle), and its mode of interaction with myosin in vitro. The distance between cross-linked filaments in the actin/bundle was 8-9 nm, and the bundle showed the transverse periodicity of 36 nm perpendicular to the bundle axis, which was confirmed by electron microscopy. Decoration of the actin/fascin bundle with heavy meromyosin revealed that the arrowheads of filaments in the bundle pointed in the same direction, indicating that the bundle has polarity. This result suggested that fascin-1 plays an essential role in polarity of actin bundles in filopodia. In the in vitro motility assay, actin/fascin bundles slid as fast as single actin filaments on myosin II and myosin V. When myosin was attached to the surface at high density, the actin/fascin bundle disassembled to single filaments at the pointed end of the bundle during sliding. These results suggest that myosins may drive filopodial actin bundles backward by interacting with actin filaments on the surface, and may induce disassembly of the bundle at the basal region of filopodia.

UI MeSH Term Description Entries
D008840 Microfilament Proteins Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D011554 Pseudopodia A dynamic actin-rich extension of the surface of an animal cell used for locomotion or prehension of food. Axopodia,Filopodia,Lamellipodia,Lobopodia,Microspikes, Cell Surface,Reticulopodia,Pseudopodium,Cell Surface Microspike,Cell Surface Microspikes,Lamellipodias,Microspike, Cell Surface,Surface Microspike, Cell,Surface Microspikes, Cell
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D015879 Myosin Subfragments Parts of the myosin molecule resulting from cleavage by proteolytic enzymes (PAPAIN; TRYPSIN; or CHYMOTRYPSIN) at well-localized regions. Study of these isolated fragments helps to delineate the functional roles of different parts of myosin. Two of the most common subfragments are myosin S-1 and myosin S-2. S-1 contains the heads of the heavy chains plus the light chains and S-2 contains part of the double-stranded, alpha-helical, heavy chain tail (myosin rod). Actomyosin Subfragments,Meromyosin Subfragments,Myosin Rod,Myosin S-1,Myosin S-2,ATPase, Actin-S1,Actin S1 ATPase,Actoheavy Meromyosin,Actomyosin Subfragment 1 ATPase,H-Meromyosin,Heavy Meromyosin,Heavy Meromyosin Subfragment-1,Heavy Meromyosin Subfragment-2,Light Meromyosin,Myosin Subfragment-1,Myosin Subfragment-2,ATPase, Actin S1,Actin-S1 ATPase,H Meromyosin,Heavy Meromyosin Subfragment 1,Heavy Meromyosin Subfragment 2,Meromyosin Subfragment-1, Heavy,Meromyosin Subfragment-2, Heavy,Meromyosin, Actoheavy,Meromyosin, Heavy,Meromyosin, Light,Myosin S 1,Myosin S 2,Myosin Subfragment 1,Myosin Subfragment 2,Subfragment-1, Heavy Meromyosin,Subfragment-1, Myosin,Subfragment-2, Heavy Meromyosin,Subfragment-2, Myosin,Subfragments, Actomyosin,Subfragments, Meromyosin,Subfragments, Myosin
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles

Related Publications

Ryoki Ishikawa, and Takeshi Sakamoto, and Toshio Ando, and Sugie Higashi-Fujime, and Kazuhiro Kohama
August 2010, The Journal of biological chemistry,
Ryoki Ishikawa, and Takeshi Sakamoto, and Toshio Ando, and Sugie Higashi-Fujime, and Kazuhiro Kohama
May 2007, The Journal of cell biology,
Ryoki Ishikawa, and Takeshi Sakamoto, and Toshio Ando, and Sugie Higashi-Fujime, and Kazuhiro Kohama
June 2024, The Journal of cell biology,
Ryoki Ishikawa, and Takeshi Sakamoto, and Toshio Ando, and Sugie Higashi-Fujime, and Kazuhiro Kohama
June 2013, Physical biology,
Ryoki Ishikawa, and Takeshi Sakamoto, and Toshio Ando, and Sugie Higashi-Fujime, and Kazuhiro Kohama
January 2005, Biophysics (Nagoya-shi, Japan),
Ryoki Ishikawa, and Takeshi Sakamoto, and Toshio Ando, and Sugie Higashi-Fujime, and Kazuhiro Kohama
June 2010, Cytoskeleton (Hoboken, N.J.),
Ryoki Ishikawa, and Takeshi Sakamoto, and Toshio Ando, and Sugie Higashi-Fujime, and Kazuhiro Kohama
June 2009, Physical chemistry chemical physics : PCCP,
Ryoki Ishikawa, and Takeshi Sakamoto, and Toshio Ando, and Sugie Higashi-Fujime, and Kazuhiro Kohama
November 1998, The Journal of investigative dermatology,
Ryoki Ishikawa, and Takeshi Sakamoto, and Toshio Ando, and Sugie Higashi-Fujime, and Kazuhiro Kohama
August 1990, The Journal of cell biology,
Ryoki Ishikawa, and Takeshi Sakamoto, and Toshio Ando, and Sugie Higashi-Fujime, and Kazuhiro Kohama
April 1997, Biophysical journal,
Copied contents to your clipboard!