[Induction of the SOS-like system in Rec-mutants of Bacillus subtilis]. 1992

A V Suslov, and I N Suslova, and R A Kreneva, and V L Kalinin

Influence of the recE1, recB2, recB3, recB19, recF15, recF18, recL16, recM13 and recM27 mutations of the induction of the SOS-like system component, i. e. the RecE protein of Bacillus subtilis was studied by RIA-dot-blot method in UV-irradiated or treated by nalidixic acid cells. These agents caused a significant increase in the wild type (rec+) cells but did not stimulate the RecE synthesis in the rec mutants tested. The two exceptions were recB2 and recF18 mutants treated by nalidixic acid. The tsi23 mutation caused thermoinduction of phi 105 bacteriophage in the rec+ genetic background while no prophage particles were induced in the recE, recF, recL, recM mutants. The data suggest that the genetic damage of several rec genes including recB, recE, recF, recL and recM can block induction of the SOS-like system of Bacillus subtilis.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009268 Nalidixic Acid A synthetic 1,8-naphthyridine antimicrobial agent with a limited bacteriocidal spectrum. It is an inhibitor of the A subunit of bacterial DNA GYRASE. Nalidixin,Nalidixate Sodium,Nalidixate Sodium Anhydrous,Nevigramon,Sodium Nalidixic Acid, Anhydrous,Sodium Nalidixic Acid, Monohydrate,Acid, Nalidixic,Anhydrous, Nalidixate Sodium,Sodium Anhydrous, Nalidixate,Sodium, Nalidixate
D005090 Exodeoxyribonucleases A family of enzymes that catalyze the exonucleolytic cleavage of DNA. It includes members of the class EC 3.1.11 that produce 5'-phosphomonoesters as cleavage products. DNA Exonucleases,Exonucleases, DNA
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D013014 SOS Response, Genetics An error-prone mechanism or set of functions for repairing damaged microbial DNA. SOS functions (a concept reputedly derived from the SOS of the international distress signal) are involved in DNA repair and mutagenesis, in cell division inhibition, in recovery of normal physiological conditions after DNA repair, and possibly in cell death when DNA damage is extensive. SOS Response (Genetics),SOS Box,SOS Function,SOS Induction,SOS Region,SOS Repair,SOS Response,SOS System,Box, SOS,Function, SOS,Functions, SOS,Genetics SOS Response,Genetics SOS Responses,Induction, SOS,Inductions, SOS,Region, SOS,Regions, SOS,Repair, SOS,Repairs, SOS,Response, Genetics SOS,Response, SOS,Response, SOS (Genetics),Responses, Genetics SOS,Responses, SOS,Responses, SOS (Genetics),SOS Functions,SOS Inductions,SOS Regions,SOS Repairs,SOS Responses,SOS Responses (Genetics),SOS Responses, Genetics,SOS Systems,System, SOS,Systems, SOS
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
D029968 Escherichia coli Proteins Proteins obtained from ESCHERICHIA COLI. E coli Proteins

Related Publications

A V Suslov, and I N Suslova, and R A Kreneva, and V L Kalinin
December 1984, Journal of bacteriology,
A V Suslov, and I N Suslova, and R A Kreneva, and V L Kalinin
February 1991, Genetika,
A V Suslov, and I N Suslova, and R A Kreneva, and V L Kalinin
July 1986, Proceedings of the National Academy of Sciences of the United States of America,
A V Suslov, and I N Suslova, and R A Kreneva, and V L Kalinin
March 1982, Genetika,
A V Suslov, and I N Suslova, and R A Kreneva, and V L Kalinin
November 2005, Journal of bacteriology,
A V Suslov, and I N Suslova, and R A Kreneva, and V L Kalinin
September 1993, Journal of bacteriology,
A V Suslov, and I N Suslova, and R A Kreneva, and V L Kalinin
November 1980, Journal of bacteriology,
A V Suslov, and I N Suslova, and R A Kreneva, and V L Kalinin
September 1984, Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine],
A V Suslov, and I N Suslova, and R A Kreneva, and V L Kalinin
June 1986, Mutation research,
Copied contents to your clipboard!