Extrahepatic disposition of 3H-aflatoxin B1 in the rainbow trout (Oncorhynchus mykiss). 1992

P Larsson, and S Ngethe, and K Ingebrigtsen, and H Tjälve
Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, Uppsala.

Whole-body autoradiography in rainbow trout (Oncorhynchus mykiss) after oral and intravenous administration of 3H-labelled aflatoxin B1 showed labelling of several extrahepatic tissues, such as the uveal melanin and the vitreous humour of the eyes, the trunk and head kidney, the olfactory rosettes and the pyloric caecae. Liquid chromatography of extracts of the vitreous humour showed that unmetabolized 3H-AFB1 was the main labelled material present at this site. Liquid chromatography of extracts of the uveal melanin showed presence of aflatoxicol and aflatoxin B1 in proportions of about 3:1. The binding to the pigment is probably due to a hydrophobic type of interaction with the melanin. Microautoradiography showed that melanin-containing cells in the trunk and head kidney and in the olfactory rosettes also accumulated high amounts of radioactivity. In the trunk kidney there was, in addition, a labelling of the second segment of the proximal tubules and of the distal tubules and the collecting ducts. Studies in vitro with microsomal and 12,000 x g supernatant preparations of the trunk kidney showed formation of DNA- and protein-bound metabolites from the aflatoxin B1. It is probable that the bioactivation of the aflatoxin B1 is confined to the cytoplasm of the cells, may be related to excretion and/or absorption processes. Microautoradiography of the olfactory rosettes, showed labelling of the sensory epithelium, but not the indifferent epithelium. A low formation of protein-bound aflatoxin B1-metabolites was found in incubations with microsomal preparations of this tissue. The same observation was made in incubations with microsomal preparations of the head kidney. In the pyloric caeca bound metabolites were observed in vivo at a level comparable to that found in the trunk kidney. Our results suggest that retention and metabolism in some extrahepatic tissues might be of importance as concerns the toxicologic potential of aflatoxin B1 in the rainbow trout.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008543 Melanins Insoluble polymers of TYROSINE derivatives found in and causing darkness in skin (SKIN PIGMENTATION), hair, and feathers providing protection against SUNBURN induced by SUNLIGHT. CAROTENES contribute yellow and red coloration. Allomelanins,Melanin,Phaeomelanins
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005123 Eye The organ of sight constituting a pair of globular organs made up of a three-layered roughly spherical structure specialized for receiving and responding to light. Eyes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

P Larsson, and S Ngethe, and K Ingebrigtsen, and H Tjälve
January 1991, Toxicologic pathology,
P Larsson, and S Ngethe, and K Ingebrigtsen, and H Tjälve
March 1995, Xenobiotica; the fate of foreign compounds in biological systems,
P Larsson, and S Ngethe, and K Ingebrigtsen, and H Tjälve
January 2000, Fish & shellfish immunology,
P Larsson, and S Ngethe, and K Ingebrigtsen, and H Tjälve
October 2007, Fish & shellfish immunology,
P Larsson, and S Ngethe, and K Ingebrigtsen, and H Tjälve
August 1996, Toxicology and applied pharmacology,
P Larsson, and S Ngethe, and K Ingebrigtsen, and H Tjälve
November 2009, Aquatic toxicology (Amsterdam, Netherlands),
P Larsson, and S Ngethe, and K Ingebrigtsen, and H Tjälve
January 1992, Peptides,
P Larsson, and S Ngethe, and K Ingebrigtsen, and H Tjälve
January 2007, General and comparative endocrinology,
P Larsson, and S Ngethe, and K Ingebrigtsen, and H Tjälve
August 1996, Xenobiotica; the fate of foreign compounds in biological systems,
P Larsson, and S Ngethe, and K Ingebrigtsen, and H Tjälve
January 2014, Journal of comparative pathology,
Copied contents to your clipboard!