Cadmium-induced hepatic endothelial cell injury in inbred strains of mice. 1992

J Liu, and W C Kershaw, and Y P Liu, and C D Klaassen
Department of Pharmacology, University of Kansas Medical Center, Kansas City 66160.

Susceptibility to cadmium (Cd) hepatotoxicity differs among inbred strains of mice. For example, C3H/HeJ mice are sensitive to Cd-induced hepatotoxicity, whereas DBA/2J mice are resistant. The mechanism of genetic predisposition to Cd hepatotoxicity is unknown. A contemporary theory for acute target organ intoxication maintains that Cd initially damages vascular endothelium and parenchymal cell injury is a secondary event that results from localized ischemia. In the present study, the hypothesis that hepatic endothelial cells (EC) of C3H mice are more susceptible to Cd toxicity than those of DBA mice was tested. Hepatic parenchymal and endothelial cells were grown separately on monolayer cultures for 22 h and subsequently treated with various concentrations of Cd. Hepatocellular toxicity was assessed by lactate dehydrogenase leakage and intracellular K+ loss, whereas endothelial cell injury was assessed by trypan blue exclusion and the inhibition of protein synthesis. The susceptibility of hepatocytes to the cytotoxic effects of Cd was identical between strains. In contrast, the vulnerability of EC to Cd intoxication was strain-dependent. When exposed to 2.5-10.0 microM Cd, EC of Cd-sensitive mice were more susceptible to the cytotoxic effects of Cd than those of Cd-resistant mice. Basal metallothionein (MT) levels as well as Cd uptake into EC were similar in the two strains. Following Cd exposure, EC of Cd-sensitive mice accumulated similar amounts of MT as EC of Cd-resistant mice. These observations suggest that the microvasculature in livers of inbred mice is the target tissue responsible for strain-dependent susceptibility to Cd-induced liver injury. The mechanisms that account for this genetic variation in endothelial cell response to Cd are unknown, but do not appear to be related to the cellular disposition of Cd nor to a defect in the metabolism of MT.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008668 Metallothionein A low-molecular-weight (approx. 10 kD) protein occurring in the cytoplasm of kidney cortex and liver. It is rich in cysteinyl residues and contains no aromatic amino acids. Metallothionein shows high affinity for bivalent heavy metals. Isometallothionein,Metallothionein A,Metallothionein B,Metallothionein I,Metallothionein II,Metallothionein IIA
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002106 Cadmium Radioisotopes Unstable isotopes of cadmium that decay or disintegrate emitting radiation. Cd atoms with atomic weights 103-105, 107, 109, 115, and 117-119 are radioactive cadmium isotopes. Radioisotopes, Cadmium
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums

Related Publications

J Liu, and W C Kershaw, and Y P Liu, and C D Klaassen
January 1991, Chemico-biological interactions,
J Liu, and W C Kershaw, and Y P Liu, and C D Klaassen
January 2014, Biotechnology, biotechnological equipment,
J Liu, and W C Kershaw, and Y P Liu, and C D Klaassen
November 1970, Archives of biochemistry and biophysics,
J Liu, and W C Kershaw, and Y P Liu, and C D Klaassen
January 1988, Folia biologica,
J Liu, and W C Kershaw, and Y P Liu, and C D Klaassen
September 1969, Archives of environmental health,
J Liu, and W C Kershaw, and Y P Liu, and C D Klaassen
January 1988, Enzyme,
J Liu, and W C Kershaw, and Y P Liu, and C D Klaassen
April 1980, Teratology,
J Liu, and W C Kershaw, and Y P Liu, and C D Klaassen
January 1980, Substance and alcohol actions/misuse,
J Liu, and W C Kershaw, and Y P Liu, and C D Klaassen
July 2004, American journal of respiratory cell and molecular biology,
J Liu, and W C Kershaw, and Y P Liu, and C D Klaassen
November 2022, Marine drugs,
Copied contents to your clipboard!