Hypotensive function of the brain angiotensin-(1-7) in Sprague Dawley and renin transgenic rats. 2003

J Dobruch, and P Paczwa, and S Łoń, and M C Khosla, and E Szczepańska-Sadowska
Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland.

Angiotensin-(1-7) (Ang-[1-7]) is present in the brain of normotensive Sprague Dawley (SD) rats, and its hypothalamic content is elevated in TGRmRen2(27) rats (TGR) with renin dependent transgenic hypertension. The purpose of the present study was to determine the role of intrabrain Ang-(1-7) in the regulation of cardiovascular functions in SD and TGR rats under resting conditions and during haemodynamic challenge produced by rapid bleeding. Two groups of experiments were performed on conscious SD and TGR rats that were chronically instrumented with a lateral cerebral ventricle (LCV) cannula and an intraarterial catheter. Blood pressure (MAP) and heart rate period (Hp=distance between two systolic peaks) were continuously monitored: 1) under resting conditions during an LCV infusion of either artificial cerebrospinal fluid (aCSF, 5 microl/hr) or Ang-(1-7) in aCSF (100 pmol/5 microl/hr), and 2) before and after haemorrhage performed during LCV infusion of either aCSF or Ang-(1-7) antagonist (A-779, 4 nmol/5 microl/hr). Cerebroventricular infusion of Ang-(1-7) did not affect baseline MAP in the SD rats but it caused a significant decrease in blood pressure in the TGR rats. In the control experiments, haemorrhage significantly reduced MAP in the SD and TGR rats and heart rate in the TGR rats. Cerebroventricular infusion of Ang-(1-7) antagonist eliminated posthaemorrhagic hypotension in both strains and bradycardia in the TGR rats. The results indicate that intrabrain Ang-(1-7) may contribute to posthaemorrhagic hypotension and bradycardia. Moreover, the manner in which it centrally regulates the cardiovascular functions in the SD and TGR rats may be considerably different.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D007022 Hypotension Abnormally low BLOOD PRESSURE that can result in inadequate blood flow to the brain and other vital organs. Common symptom is DIZZINESS but greater negative impacts on the body occur when there is prolonged depravation of oxygen and nutrients. Blood Pressure, Low,Hypotension, Vascular,Low Blood Pressure,Vascular Hypotension
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002552 Cerebral Ventricles Four CSF-filled (see CEREBROSPINAL FLUID) cavities within the cerebral hemispheres (LATERAL VENTRICLES), in the midline (THIRD VENTRICLE) and within the PONS and MEDULLA OBLONGATA (FOURTH VENTRICLE). Foramen of Monro,Cerebral Ventricular System,Cerebral Ventricle,Cerebral Ventricular Systems,Monro Foramen,System, Cerebral Ventricular,Systems, Cerebral Ventricular,Ventricle, Cerebral,Ventricles, Cerebral,Ventricular System, Cerebral,Ventricular Systems, Cerebral
D002555 Cerebrospinal Fluid A watery fluid that is continuously produced in the CHOROID PLEXUS and circulates around the surface of the BRAIN; SPINAL CORD; and in the CEREBRAL VENTRICLES. Cerebro Spinal Fluid,Cerebro Spinal Fluids,Cerebrospinal Fluids,Fluid, Cerebro Spinal,Fluid, Cerebrospinal,Fluids, Cerebro Spinal,Fluids, Cerebrospinal,Spinal Fluid, Cerebro,Spinal Fluids, Cerebro
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse

Related Publications

J Dobruch, and P Paczwa, and S Łoń, and M C Khosla, and E Szczepańska-Sadowska
March 2007, Peptides,
J Dobruch, and P Paczwa, and S Łoń, and M C Khosla, and E Szczepańska-Sadowska
January 2021, Current eye research,
J Dobruch, and P Paczwa, and S Łoń, and M C Khosla, and E Szczepańska-Sadowska
July 1999, Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology,
J Dobruch, and P Paczwa, and S Łoń, and M C Khosla, and E Szczepańska-Sadowska
June 1995, Hypertension (Dallas, Tex. : 1979),
J Dobruch, and P Paczwa, and S Łoń, and M C Khosla, and E Szczepańska-Sadowska
January 2013, PloS one,
J Dobruch, and P Paczwa, and S Łoń, and M C Khosla, and E Szczepańska-Sadowska
April 2020, American journal of physiology. Heart and circulatory physiology,
J Dobruch, and P Paczwa, and S Łoń, and M C Khosla, and E Szczepańska-Sadowska
January 2003, Brain research bulletin,
J Dobruch, and P Paczwa, and S Łoń, and M C Khosla, and E Szczepańska-Sadowska
June 2014, Biology of the cell,
J Dobruch, and P Paczwa, and S Łoń, and M C Khosla, and E Szczepańska-Sadowska
September 2021, European journal of ophthalmology,
J Dobruch, and P Paczwa, and S Łoń, and M C Khosla, and E Szczepańska-Sadowska
August 2020, Biology of sex differences,
Copied contents to your clipboard!