Elimination in vivo of developing T cells by natural killer cells. 2003

Eckart Schott, and Roberto Bonasio, and Hidde L Ploegh
Department of Pathology, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA.

Natural killer cells gauge the absence of self class I MHC on susceptible target cells by means of inhibitory receptors such as members of the Ly49 family. To initiate killing by natural killer cells, a lack of inhibitory signals must be accompanied by the presence of activating ligands on the target cell. Although natural killer cell-mediated rejection of class I MHC-deficient bone marrow (BM) grafts is a matter of record, little is known about the targeting in vivo of specific cellular subsets by natural killer cells. We show here that development of class I MHC-negative thymocytes is delayed as a result of natural killer cell toxicity after grafting of a class I MHC-positive host with class I MHC-negative BM. Double positive thymocytes that persist in the presence of natural killer cells display an unusual T cell receptor-deficient phenotype, yet nevertheless give rise to single positive thymocytes and yield mature class I MHC-deficient lymphocytes that accumulate in the class I MHC-positive host. The resulting class I MHC-deficient CD8 T cells are functional and upon activation remain susceptible to natural killer cell toxicity in vivo. Reconstitution of class I MHC-deficient BM precursors with H2-K(b) by retroviral transduction fully restores normal thymic development.

UI MeSH Term Description Entries
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008212 Lymphocyte Depletion Immunosuppression by reduction of circulating lymphocytes or by T-cell depletion of bone marrow. The former may be accomplished in vivo by thoracic duct drainage or administration of antilymphocyte serum. The latter is performed ex vivo on bone marrow before its transplantation. Depletion, Lymphocyte
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D006183 H-2 Antigens The major group of transplantation antigens in the mouse. H2 Antigens,Antigens, H-2,Antigens, H2,H 2 Antigens
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D013950 Thymus Gland A single, unpaired primary lymphoid organ situated in the MEDIASTINUM, extending superiorly into the neck to the lower edge of the THYROID GLAND and inferiorly to the fourth costal cartilage. It is necessary for normal development of immunologic function early in life. By puberty, it begins to involute and much of the tissue is replaced by fat. Thymus,Gland, Thymus,Glands, Thymus,Thymus Glands
D015395 Histocompatibility Antigens Class I Membrane glycoproteins consisting of an alpha subunit and a BETA 2-MICROGLOBULIN beta subunit. In humans, highly polymorphic genes on CHROMOSOME 6 encode the alpha subunits of class I antigens and play an important role in determining the serological specificity of the surface antigen. Class I antigens are found on most nucleated cells and are generally detected by their reactivity with alloantisera. These antigens are recognized during GRAFT REJECTION and restrict cell-mediated lysis of virus-infected cells. Class I Antigen,Class I Antigens,Class I Histocompatibility Antigen,Class I MHC Protein,Class I Major Histocompatibility Antigen,MHC Class I Molecule,MHC-I Peptide,Class I Histocompatibility Antigens,Class I Human Antigens,Class I MHC Proteins,Class I Major Histocompatibility Antigens,Class I Major Histocompatibility Molecules,Human Class I Antigens,MHC Class I Molecules,MHC-I Molecules,MHC-I Peptides,Antigen, Class I,Antigens, Class I,I Antigen, Class,MHC I Molecules,MHC I Peptide,MHC I Peptides,Molecules, MHC-I,Peptide, MHC-I,Peptides, MHC-I
D016026 Bone Marrow Transplantation The transference of BONE MARROW from one human or animal to another for a variety of purposes including HEMATOPOIETIC STEM CELL TRANSPLANTATION or MESENCHYMAL STEM CELL TRANSPLANTATION. Bone Marrow Cell Transplantation,Grafting, Bone Marrow,Transplantation, Bone Marrow,Transplantation, Bone Marrow Cell,Bone Marrow Grafting

Related Publications

Eckart Schott, and Roberto Bonasio, and Hidde L Ploegh
June 2000, Arthritis and rheumatism,
Eckart Schott, and Roberto Bonasio, and Hidde L Ploegh
November 2002, Archives of dermatological research,
Eckart Schott, and Roberto Bonasio, and Hidde L Ploegh
April 1979, Journal of immunology (Baltimore, Md. : 1950),
Eckart Schott, and Roberto Bonasio, and Hidde L Ploegh
September 2002, The Lancet. Oncology,
Eckart Schott, and Roberto Bonasio, and Hidde L Ploegh
December 2015, Biomedical journal,
Eckart Schott, and Roberto Bonasio, and Hidde L Ploegh
March 2012, Nature reviews. Immunology,
Eckart Schott, and Roberto Bonasio, and Hidde L Ploegh
November 2013, Arthritis research & therapy,
Eckart Schott, and Roberto Bonasio, and Hidde L Ploegh
July 2013, Biochimica et biophysica acta,
Eckart Schott, and Roberto Bonasio, and Hidde L Ploegh
August 1991, Journal of immunology (Baltimore, Md. : 1950),
Eckart Schott, and Roberto Bonasio, and Hidde L Ploegh
January 2009, Advances in experimental medicine and biology,
Copied contents to your clipboard!