Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. 2003

P Di Martino, and R Fursy, and L Bret, and B Sundararaju, and R S Phillips
Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, Université de Cergy-Pontoise, Pontoise, France. Patrick.Di_Martino@bio.u-cergy.fr

We demonstrated previously that genetic inactivation of tryptophanase is responsible for a dramatic decrease in biofilm formation in the laboratory strain Escherichia coli S17-1. In the present study, we tested whether the biochemical inhibition of tryptophanase, with the competitive inhibitor oxindolyl-L-alanine, could affect polystyrene colonization by E. coli and other indole-producing bacteria. Oxindolyl-L-alanine inhibits, in a dose-dependent manner, indole production and biofilm formation by strain S17-1 grown in Luria-Bertani (LB) medium. Supplementation with indole at physiologically relevant concentrations restores biofilm formation by strain S17-1 in the presence of oxindolyl-L-alanine and by mutant strain E. coli 3714 (S17-1 tnaA::Tn5) in LB medium. Oxindolyl-L-alanine also inhibits the adherence of S17-1 cells to polystyrene for a 3-h incubation time, but mutant strain 3714 cells are unaffected. At 0.5 mg/mL, oxindolyl-L-alanine exhibits inhibitory activity against biofilm formation in LB medium and in synthetic urine for several clinical isolates of E. coli, Klebsiella oxytoca, Citrobacter koseri, Providencia stuartii, and Morganella morganii but has no affect on indole-negative Klebsiella pneumoniae strains. In conclusion, these data suggest that indole, produced by the action of tryptophanase, is involved in polystyrene colonization by several indole-producing bacterial species. Indole may act as a signalling molecule to regulate the expression of adhesion and biofilm-promoting factors.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D011137 Polystyrenes Polymerized forms of styrene used as a biocompatible material, especially in dentistry. They are thermoplastic and are used as insulators, for injection molding and casting, as sheets, plates, rods, rigid forms and beads. Polystyrol,Polystyrene,Polystyrols
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000078183 Oxindoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl and a carbonyl at the pyrrole ring typically at the 2-position. Ajmalicine Oxindole,Ajmalicine Oxindoles,Ajmalicine-Type Oxindole,Ajmalicine-Type Oxindoles,Indolinone,Indolinone Derivative,Macroline Oxindole,Macroline Oxindoles,Macroline-Type Oxindole,Macroline-Type Oxindoles,Oxazolidinone Derivative,Oxindole Alkaloid,Oxindole Alkaloid Derivative,Oxindole Derivative,Indolinone Derivatives,Indolinones,Oxazolidinone Derivatives,Oxindole Alkaloid Derivatives,Oxindole Alkaloids,Oxindole Derivatives,Ajmalicine Type Oxindole,Ajmalicine Type Oxindoles,Alkaloid Derivative, Oxindole,Alkaloid, Oxindole,Derivative, Indolinone,Derivative, Oxazolidinone,Derivative, Oxindole,Derivative, Oxindole Alkaloid,Macroline Type Oxindole,Macroline Type Oxindoles,Oxindole, Ajmalicine,Oxindole, Ajmalicine-Type,Oxindole, Macroline,Oxindole, Macroline-Type,Oxindoles, Ajmalicine,Oxindoles, Ajmalicine-Type,Oxindoles, Macroline,Oxindoles, Macroline-Type
D000409 Alanine A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM. Abufène,Alanine, L-Isomer,L-Alanine,Alanine, L Isomer,L Alanine,L-Isomer Alanine
D001422 Bacterial Adhesion Physicochemical property of fimbriated (FIMBRIAE, BACTERIAL) and non-fimbriated bacteria of attaching to cells, tissue, and nonbiological surfaces. It is a factor in bacterial colonization and pathogenicity. Adhesion, Bacterial,Adhesions, Bacterial,Bacterial Adhesions
D014368 Tryptophanase An enzyme that catalyzes the conversion of L-tryptophan and water to indole, pyruvate, and ammonia. It is a pyridoxal-phosphate protein, requiring K+. It also catalyzes 2,3-elimination and beta-replacement reactions of some indole-substituted tryptophan analogs of L-cysteine, L-serine, and other 3-substituted amino acids. (From Enzyme Nomenclature, 1992) EC 4.1.99.1. Tryptophan Indole-Lyase,Indole-Lyase, Tryptophan,Tryptophan Indole Lyase
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial

Related Publications

P Di Martino, and R Fursy, and L Bret, and B Sundararaju, and R S Phillips
July 2001, Journal of bacteriology,
P Di Martino, and R Fursy, and L Bret, and B Sundararaju, and R S Phillips
October 2010, Indian journal of microbiology,
P Di Martino, and R Fursy, and L Bret, and B Sundararaju, and R S Phillips
January 2010, Microbiology (Reading, England),
P Di Martino, and R Fursy, and L Bret, and B Sundararaju, and R S Phillips
April 2002, Biochimie,
P Di Martino, and R Fursy, and L Bret, and B Sundararaju, and R S Phillips
January 2017, FEMS microbiology letters,
P Di Martino, and R Fursy, and L Bret, and B Sundararaju, and R S Phillips
January 2019, International journal of medical microbiology : IJMM,
P Di Martino, and R Fursy, and L Bret, and B Sundararaju, and R S Phillips
July 2022, Future microbiology,
P Di Martino, and R Fursy, and L Bret, and B Sundararaju, and R S Phillips
August 2021, Microbial pathogenesis,
P Di Martino, and R Fursy, and L Bret, and B Sundararaju, and R S Phillips
December 2010, Research in microbiology,
Copied contents to your clipboard!