Distribution of GABAA receptor mRNA in the motor cortex of ALS patients. 2003

Susanne Petri, and Klaus Krampfl, and Fariba Hashemi, and Claudia Grothe, and Akira Hori, and Reinhard Dengler, and Johannes Bufler
Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30623 Hannover, Germany. petri.susanne@MH-Hannover.de

The pathomechanism of amyotrophic lateral sclerosis (ALS) remains unclear. There is some evidence that excitotoxic cell death is involved in the degeneration of the motor nervous system, and that ligand-gated receptor channels play a role in the pathogenesis of the disease. Several electrophysiological and anatomical studies support the pathophysiological concept of an impaired inhibitory, namely GABAergic, control of the motoneurons in the cerebral cortex of ALS patients. The aim of our study was to investigate the expression of GABAA-receptor subunit mRNAs and the GABA synthesizing enzyme glutamic acid decarboxylase (GAD) in the motor cortex of ALS patients compared to tissue of control persons. We performed in situ hybridization histochemistry (ISH) on human postmortem motor cortex sections of ALS patients (n = 5) and age matched controls with no history of neurological disease (n = 5). The most intriguing finding was a significantly reduced mRNA expression of the alpha1-subunit in ALS patients while the level of beta1-subunit mRNA was elevated in the patients group. This may indicate specific alterations of the GABAA receptor subunit composition and result in distinct physiological and pharmacological properties of these receptors in ALS patients.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D010147 Pain Measurement Scales, questionnaires, tests, and other methods used to assess pain severity and duration in patients or experimental animals to aid in diagnosis, therapy, and physiological studies. Analgesia Tests,Analogue Pain Scale,Formalin Test,McGill Pain Questionnaire,Nociception Tests,Pain Assessment,Pain Intensity,Pain Severity,Tourniquet Pain Test,Visual Analogue Pain Scale,Analog Pain Scale,Assessment, Pain,McGill Pain Scale,Visual Analog Pain Scale,Analgesia Test,Analog Pain Scales,Analogue Pain Scales,Formalin Tests,Intensity, Pain,Measurement, Pain,Nociception Test,Pain Assessments,Pain Intensities,Pain Measurements,Pain Questionnaire, McGill,Pain Scale, Analog,Pain Scale, Analogue,Pain Scale, McGill,Pain Severities,Pain Test, Tourniquet,Questionnaire, McGill Pain,Scale, Analog Pain,Scale, Analogue Pain,Scale, McGill Pain,Severity, Pain,Test, Analgesia,Test, Formalin,Test, Nociception,Test, Tourniquet Pain,Tests, Nociception,Tourniquet Pain Tests
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D005820 Genetic Testing Detection of a MUTATION; GENOTYPE; KARYOTYPE; or specific ALLELES associated with genetic traits, heritable diseases, or predisposition to a disease, or that may lead to the disease in descendants. It includes prenatal genetic testing. Genetic Predisposition Testing,Genetic Screening,Predictive Genetic Testing,Predictive Testing, Genetic,Testing, Genetic Predisposition,Genetic Predictive Testing,Genetic Screenings,Genetic Testing, Predictive,Predisposition Testing, Genetic,Screening, Genetic,Screenings, Genetic,Testing, Genetic,Testing, Genetic Predictive,Testing, Predictive Genetic
D005968 Glutamate Decarboxylase A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15. Glutamate Carboxy-Lyase,Glutamic Acid Decarboxylase,Acid Decarboxylase, Glutamic,Carboxy-Lyase, Glutamate,Decarboxylase, Glutamate,Decarboxylase, Glutamic Acid,Glutamate Carboxy Lyase
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly

Related Publications

Susanne Petri, and Klaus Krampfl, and Fariba Hashemi, and Claudia Grothe, and Akira Hori, and Reinhard Dengler, and Johannes Bufler
May 1994, The Journal of comparative neurology,
Susanne Petri, and Klaus Krampfl, and Fariba Hashemi, and Claudia Grothe, and Akira Hori, and Reinhard Dengler, and Johannes Bufler
July 2021, Brain sciences,
Susanne Petri, and Klaus Krampfl, and Fariba Hashemi, and Claudia Grothe, and Akira Hori, and Reinhard Dengler, and Johannes Bufler
June 2019, Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia,
Susanne Petri, and Klaus Krampfl, and Fariba Hashemi, and Claudia Grothe, and Akira Hori, and Reinhard Dengler, and Johannes Bufler
September 2006, The Journal of physiology,
Susanne Petri, and Klaus Krampfl, and Fariba Hashemi, and Claudia Grothe, and Akira Hori, and Reinhard Dengler, and Johannes Bufler
January 1990, Experimental brain research,
Susanne Petri, and Klaus Krampfl, and Fariba Hashemi, and Claudia Grothe, and Akira Hori, and Reinhard Dengler, and Johannes Bufler
September 1995, Neuroscience letters,
Susanne Petri, and Klaus Krampfl, and Fariba Hashemi, and Claudia Grothe, and Akira Hori, and Reinhard Dengler, and Johannes Bufler
November 1988, Journal of neurochemistry,
Susanne Petri, and Klaus Krampfl, and Fariba Hashemi, and Claudia Grothe, and Akira Hori, and Reinhard Dengler, and Johannes Bufler
October 1991, European journal of pharmacology,
Susanne Petri, and Klaus Krampfl, and Fariba Hashemi, and Claudia Grothe, and Akira Hori, and Reinhard Dengler, and Johannes Bufler
September 2000, Annals of the New York Academy of Sciences,
Susanne Petri, and Klaus Krampfl, and Fariba Hashemi, and Claudia Grothe, and Akira Hori, and Reinhard Dengler, and Johannes Bufler
February 1984, Journal of neuroimmunology,
Copied contents to your clipboard!