Glycinergic input to carp retinal ganglion cells may be mediated by glycine receptors with homologous kinetics. 2003

Geng-Lin Li, and Xiong-Li Yang
Institute of Neurobiology, Fudan University, 220 Handan Road, Shanghai 200433, PR China.

Current responses of carp retinal ganglion cells (RGCs) retrogradely labeled and freshly dissociated to rapid application of glycine were recorded by whole-cell patch clamp techniques and effects of glycine antagonists on these responses were analyzed. The current response to maintained application of glycine at a concentration higher than 30 microM exhibited desensitization, which was well fitted to a monoexponential function. Strychnine (1 microM), a glycine receptor antagonist, completely blocked the response to 100 microM glycine. Strychnine at a concentration range between 10 and 200 nM suppressed the response to 100 microM glycine in a dose-dependent manner, and only a slow-activated and sustained current eventually remained in the presence of 200 nM strychnine. Power spectral density (PSD) analysis revealed no changes in the density-frequency dependence caused by strychnine. It was further shown that dissociation of strychnine from glycine receptors was rather slow. Moreover, Zn(2+) exerted similar dual action on this sustained response and the response in Ringer's: potentiating and reducing them at low and high concentrations of Zn(2+), respectively. 5,7-Dichlorokynurenic acid (DCKA, 500 microM), a selective blocker of the glycine recognition site at the NMDA receptor, partially reduced the glycine response, but without changing its kinetics. These results suggest that glycinergic input to carp ganglion cells may be mediated by strychnine-sensitive glycine receptors with homologous kinetics, and slow dissociation of strychnine from glycine receptors may partially account for the changes in glycine response kinetics occurring in the presence of strychnine.

UI MeSH Term Description Entries
D002347 Carps Common name for a number of different species of fish in the family Cyprinidae. This includes, among others, the common carp, crucian carp, grass carp, and silver carp. Carassius carassius,Crucian Carp,Cyprinus,Grass Carp,Carp,Ctenopharyngodon idellus,Cyprinus carpio,Hypophthalmichthys molitrix,Koi Carp,Silver Carp,Carp, Crucian,Carp, Grass,Carp, Koi,Carp, Silver,Carps, Crucian,Carps, Grass,Carps, Silver,Crucian Carps,Grass Carps,Silver Carps
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell
D013331 Strychnine An alkaloid found in the seeds of STRYCHNOS NUX-VOMICA. It is a competitive antagonist at glycine receptors and thus a convulsant. It has been used as an analeptic, in the treatment of nonketotic hyperglycinemia and sleep apnea, and as a rat poison. Strychnine Nitrate,Nitrate, Strychnine
D015032 Zinc A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with ANEMIA, short stature, HYPOGONADISM, impaired WOUND HEALING, and geophagia. It is known by the symbol Zn.
D018009 Receptors, Glycine Cell surface receptors that bind GLYCINE with high affinity and trigger intracellular changes which influence the behavior of cells. Glycine receptors in the CENTRAL NERVOUS SYSTEM have an intrinsic chloride channel. GlyA receptor is sensitive to STRYCHNINE and localized in the post-synaptic membrane of inhibitory glycinergic neurons. GlyB receptor is insensitive to strychnine and associated with the excitatory NMDA receptor. Excitatory Glycine Receptors,GlyA Receptors,GlyB Receptors,Glycine A Receptors,Glycine B Receptors,Glycine Receptor alpha1,Glycine Receptors,Inhibitory Glycine Receptor,SIG Receptor,Strychnine-Insensitive Glycine Receptor,Strychnine-Sensitive Glycine Receptor,Glycine Receptor,Glycine Receptor, Inhibitory,Glycine Receptor, Strychnine-Insensitive,Glycine Receptor, Strychnine-Sensitive,Receptor, Glycine,Receptor, Inhibitory Glycine,Receptor, SIG,Receptor, Strychnine-Insensitive Glycine,Receptor, Strychnine-Sensitive Glycine,Receptors, GlyB,Strychnine Insensitive Glycine Receptor,Strychnine Sensitive Glycine Receptor

Related Publications

Geng-Lin Li, and Xiong-Li Yang
May 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Geng-Lin Li, and Xiong-Li Yang
March 1999, Proceedings of the National Academy of Sciences of the United States of America,
Geng-Lin Li, and Xiong-Li Yang
January 2002, Neuroscience,
Geng-Lin Li, and Xiong-Li Yang
June 1982, Investigative ophthalmology & visual science,
Geng-Lin Li, and Xiong-Li Yang
January 1984, Vision research,
Geng-Lin Li, and Xiong-Li Yang
February 2012, The European journal of neuroscience,
Copied contents to your clipboard!