A K(+) channel activated by cholinergic muscarinic receptors in chick ciliary ganglion neurons at early developmental stage. 2003

Carla Distasi, and Alessandra Gilardino, and Jessica Erriquez, and Pollyanna Zamburlin, and Davide Lovisolo
Dipartimento di Scienze Chimiche Alimentari Farmaceutiche e Farmacologiche, Università del Piemonte Orientale, Novara I-28100, Italy. distasi@pharm.unipmn.it

Embryonic chick ciliary ganglion (CG) neurons obtained from E7-E8 ganglia maintained in serum-free medium were stimulated with 50 microM muscarine. A fast hyperpolarization of the membrane potential was observed in 25% of the cells tested, that in some cases was associated with a slower depolarization. Accordingly, in voltage clamp experiments, either an outward current or a biphasic current response could be observed. Single-channel experiments provide evidence that these signals can be associated to the activation of a K(+) channel whose conductance is 20 pS.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009116 Muscarine A toxic alkaloid found in Amanita muscaria (fly fungus) and other fungi of the Inocybe species. It is the first parasympathomimetic substance ever studied and causes profound parasympathetic activation that may end in convulsions and death. The specific antidote is atropine.
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005726 Ganglia, Parasympathetic Ganglia of the parasympathetic nervous system, including the ciliary, pterygopalatine, submandibular, and otic ganglia in the cranial region and intrinsic (terminal) ganglia associated with target organs in the thorax and abdomen. Parasympathetic Ganglia,Ciliary Ganglion,Ganglion, Parasympathetic,Otic Ganglia,Pterygopalatine Ganglia,Submandibular Ganglia,Ciliary Ganglions,Ganglia, Otic,Ganglia, Pterygopalatine,Ganglia, Submandibular,Ganglias, Otic,Ganglias, Pterygopalatine,Ganglias, Submandibular,Ganglion, Ciliary,Ganglions, Ciliary,Otic Ganglias,Parasympathetic Ganglion,Pterygopalatine Ganglias,Submandibular Ganglias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings

Related Publications

Carla Distasi, and Alessandra Gilardino, and Jessica Erriquez, and Pollyanna Zamburlin, and Davide Lovisolo
July 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Carla Distasi, and Alessandra Gilardino, and Jessica Erriquez, and Pollyanna Zamburlin, and Davide Lovisolo
August 1988, Molecular pharmacology,
Carla Distasi, and Alessandra Gilardino, and Jessica Erriquez, and Pollyanna Zamburlin, and Davide Lovisolo
March 1981, Brain research,
Carla Distasi, and Alessandra Gilardino, and Jessica Erriquez, and Pollyanna Zamburlin, and Davide Lovisolo
June 1996, Neuroscience,
Carla Distasi, and Alessandra Gilardino, and Jessica Erriquez, and Pollyanna Zamburlin, and Davide Lovisolo
February 2023, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Carla Distasi, and Alessandra Gilardino, and Jessica Erriquez, and Pollyanna Zamburlin, and Davide Lovisolo
February 1980, Developmental biology,
Carla Distasi, and Alessandra Gilardino, and Jessica Erriquez, and Pollyanna Zamburlin, and Davide Lovisolo
June 1983, Brain research,
Carla Distasi, and Alessandra Gilardino, and Jessica Erriquez, and Pollyanna Zamburlin, and Davide Lovisolo
May 2002, American journal of physiology. Cell physiology,
Carla Distasi, and Alessandra Gilardino, and Jessica Erriquez, and Pollyanna Zamburlin, and Davide Lovisolo
October 1993, The Journal of physiology,
Carla Distasi, and Alessandra Gilardino, and Jessica Erriquez, and Pollyanna Zamburlin, and Davide Lovisolo
November 1982, Developmental biology,
Copied contents to your clipboard!