Biodegradation of naphthalene by free and alginate entrapped Pseudomonas sp. 2003

Mahmoud Abou Seoud, and Rachida Maachi
Laboratoire de cinétique et catalyse, Institut de chimie industrielle, Université des Sciences et de la technologie Houari Boumediene, BP32 Elalia, Bab Ezzouar, Alger 16111, Algeria. Mahmoud103@hotmail.com

Naphthalene degradation by freely suspended and immobilized cells of Pseudomonas sp. isolated from contaminated effluents has been investigated in batch cultures and continuously in a packed bed reactor. Naphthalene concentration was varied from 25 mM to 75 mM, the temperature (30 degrees C) and pH (7.0) were kept constant. The results showed good acclimation of the strain to carbon source and degradation rate was highly affected by initial concentration. Alginate-entrapped cells have given good yields although initial rates were not as high as those encountered with free cells. A first order exponential decay kinetic model was proposed with values of parameters for each initial concentration. A laboratory scale packed-bed bioreactor was designed using parameters calculated above and continuous experiments were realized at different flow rates (100 to 200 ml/h), with different feed concentrations and operating during 30 days. The conversion at low feed concentrations and low flow rates was complete whereas at high flow rates and high concentrations it was less efficient because of diffusional limitations and short residence time.

UI MeSH Term Description Entries
D009281 Naphthalenes Two-ring crystalline hydrocarbons isolated from coal tar. They are used as intermediates in chemical synthesis, as insect repellents, fungicides, lubricants, preservatives, and, formerly, as topical antiseptics.
D011549 Pseudomonas A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants. Chryseomonas,Pseudomona,Flavimonas
D005285 Fermentation Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID. Fermentations
D006603 Hexuronic Acids Term used to designate tetrahydroxy aldehydic acids obtained by oxidation of hexose sugars, i.e. glucuronic acid, galacturonic acid, etc. Historically, the name hexuronic acid was originally given to ascorbic acid. Hexouronic Acids,Acids, Hexouronic,Acids, Hexuronic
D000464 Alginates Salts and esters of ALGINIC ACID that are used as HYDROGELS; DENTAL IMPRESSION MATERIALS, and as absorbent materials for surgical dressings (BANDAGES, HYDROCOLLOID). They are also used to manufacture MICROSPHERES and NANOPARTICLES for DIAGNOSTIC REAGENT KITS and DRUG DELIVERY SYSTEMS. Alginate,Alginic Acid, Barium Salt,Alginic Acid, Calcium Salt,Alginic Acid, Copper Salt,Alginic Acid, Potassium Salt,Alginic Acid, Sodium Salt,Alloid G,Barium Alginate,Calcium Alginate,Calginat,Copper Alginate,Kalrostat,Kalrostat 2,Kaltostat,Potassium Alginate,Sodium Alginate,Sodium Calcium Alginate,Vocoloid,Xantalgin,poly(Mannuronic Acid), Sodium Salt,Alginate, Barium,Alginate, Calcium,Alginate, Copper,Alginate, Potassium,Alginate, Sodium,Alginate, Sodium Calcium,Calcium Alginate, Sodium
D001673 Biodegradation, Environmental Elimination of ENVIRONMENTAL POLLUTANTS; PESTICIDES and other waste using living organisms, usually involving intervention of environmental or sanitation engineers. Bioremediation,Phytoremediation,Natural Attenuation, Pollution,Environmental Biodegradation,Pollution Natural Attenuation
D012722 Sewage Refuse liquid or waste matter carried off by sewers. Sludge,Sludge Flocs
D014865 Waste Disposal, Fluid The discarding or destroying of liquid waste products or their transformation into something useful or innocuous. Disposal, Fluid Waste,Disposals, Fluid Waste,Fluid Waste Disposal,Fluid Waste Disposals,Waste Disposals, Fluid
D020723 Glucuronic Acid A sugar acid formed by the oxidation of the C-6 carbon of GLUCOSE. In addition to being a key intermediate metabolite of the uronic acid pathway, glucuronic acid also plays a role in the detoxification of certain drugs and toxins by conjugating with them to form GLUCURONIDES. Glucuronate,Glucuronic Acid, 6-(14)C-labeled, (D)-isomer,Glucuronic Acid, Monopotassium Salt,Glucuronic Acid, Monosodium Salt,Monopotassium Glucuronate,Monosodium Glucuronate,Glucuronate, Monopotassium,Glucuronate, Monosodium

Related Publications

Mahmoud Abou Seoud, and Rachida Maachi
November 2008, Journal of industrial microbiology & biotechnology,
Mahmoud Abou Seoud, and Rachida Maachi
June 1997, Genetika,
Mahmoud Abou Seoud, and Rachida Maachi
October 2007, Microbiology (Reading, England),
Mahmoud Abou Seoud, and Rachida Maachi
November 1991, Applied and environmental microbiology,
Mahmoud Abou Seoud, and Rachida Maachi
November 2001, FEMS microbiology letters,
Mahmoud Abou Seoud, and Rachida Maachi
March 2008, Huan jing ke xue= Huanjing kexue,
Mahmoud Abou Seoud, and Rachida Maachi
January 2001, Environmental pollution (Barking, Essex : 1987),
Mahmoud Abou Seoud, and Rachida Maachi
January 1980, Mikrobiologiia,
Copied contents to your clipboard!