Expression of neuronal and glial markers in so-called oligodendroglial tumors induced by transplacental administration of ethyl-nitrosourea in the rat. 1992

J Vaquero, and S Coca, and M Moreno, and S Oya, and A Arias, and M Zurita, and C Morales
Department of Experimental Neuro-oncology, Puerta de Hierro Clinic, Autonomous University, Madrid, Spain.

A series of 18 tumors with histological features of oligodendrogliomas, induced in the rat by means of transplacental ethyl-nitrosourea administration were studied for immunohistochemical demonstration of neuronal (synaptophysin and neurofilament protein) and glial (gliofibrillar acidic protein and vimentin) markers. Most of the tumors showed cells with strong positivity to synaptophysin and to a lesser degree, to neurofilament protein, suggesting the neuronal character of these neoplasms. In 10 tumors, cells with strong positivity to vimentin were found, and in three cases, tumoral cells expressed gliofibrillar acidic protein. The observation that ENU-induced oligodendroglial tumors express neuronal and, to a minor degree, glial markers, suggests their interpretation as primitive neuroectodermal tumors with clear neuronal differentiation.

UI MeSH Term Description Entries
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D009837 Oligodendroglioma A relatively slow-growing glioma that is derived from oligodendrocytes and tends to occur in the cerebral hemispheres, thalamus, or lateral ventricle. They may present at any age, but are most frequent in the third to fifth decades, with an earlier incidence peak in the first decade. Histologically, these tumors are encapsulated, relatively avascular, and tend to form cysts and microcalcifications. Neoplastic cells tend to have small round nuclei surrounded by unstained nuclei. The tumors may vary from well-differentiated to highly anaplastic forms. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, p2052; Adams et al., Principles of Neurology, 6th ed, p655) Oligodendroblastoma,Anaplastic Oligodendroglioma,Mixed Oligodendroglioma-Astrocytoma,Mixed Oligodendroglioma-Ependymoma,Oligodendroglioma, Adult,Oligodendroglioma, Childhood,Oligodendroglioma, Well-Differentiated,Well-Differentiated Oligodendroglioma,Adult Oligodendroglioma,Adult Oligodendrogliomas,Anaplastic Oligodendrogliomas,Childhood Oligodendroglioma,Childhood Oligodendrogliomas,Mixed Oligodendroglioma Astrocytoma,Mixed Oligodendroglioma Ependymoma,Mixed Oligodendroglioma-Astrocytomas,Mixed Oligodendroglioma-Ependymomas,Oligodendroblastomas,Oligodendroglioma, Anaplastic,Oligodendroglioma, Well Differentiated,Oligodendroglioma-Astrocytoma, Mixed,Oligodendroglioma-Astrocytomas, Mixed,Oligodendroglioma-Ependymoma, Mixed,Oligodendroglioma-Ependymomas, Mixed,Oligodendrogliomas,Oligodendrogliomas, Adult,Oligodendrogliomas, Anaplastic,Oligodendrogliomas, Childhood,Oligodendrogliomas, Well-Differentiated,Well Differentiated Oligodendroglioma,Well-Differentiated Oligodendrogliomas
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005038 Ethylnitrosourea A nitrosourea compound with alkylating, carcinogenic, and mutagenic properties. Nitrosoethylurea,N-Ethyl-N-nitrosourea,N Ethyl N nitrosourea
D005904 Glial Fibrillary Acidic Protein An intermediate filament protein found only in glial cells or cells of glial origin. MW 51,000. Glial Intermediate Filament Protein,Astroprotein,GFA-Protein,Glial Fibrillary Acid Protein,GFA Protein
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Vaquero, and S Coca, and M Moreno, and S Oya, and A Arias, and M Zurita, and C Morales
January 1982, Acta neuropathologica,
J Vaquero, and S Coca, and M Moreno, and S Oya, and A Arias, and M Zurita, and C Morales
January 1994, Acta neuropathologica,
J Vaquero, and S Coca, and M Moreno, and S Oya, and A Arias, and M Zurita, and C Morales
January 1974, Verhandlungen der Deutschen Gesellschaft fur Pathologie,
J Vaquero, and S Coca, and M Moreno, and S Oya, and A Arias, and M Zurita, and C Morales
December 2001, Oncogene,
J Vaquero, and S Coca, and M Moreno, and S Oya, and A Arias, and M Zurita, and C Morales
February 1981, Gan,
J Vaquero, and S Coca, and M Moreno, and S Oya, and A Arias, and M Zurita, and C Morales
February 1983, The American journal of pathology,
J Vaquero, and S Coca, and M Moreno, and S Oya, and A Arias, and M Zurita, and C Morales
January 1976, Neuropatologia polska,
J Vaquero, and S Coca, and M Moreno, and S Oya, and A Arias, and M Zurita, and C Morales
July 1982, Acta pathologica japonica,
J Vaquero, and S Coca, and M Moreno, and S Oya, and A Arias, and M Zurita, and C Morales
June 1975, Journal of the National Cancer Institute,
J Vaquero, and S Coca, and M Moreno, and S Oya, and A Arias, and M Zurita, and C Morales
February 1992, Japanese journal of cancer research : Gann,
Copied contents to your clipboard!