Overexpression of rat heat shock protein 70 reduces neuronal injury after transient focal ischemia, transient global ischemia, or kainic acid-induced seizures. 2003

Daisuke Tsuchiya, and Shwuhuey Hong, and Yasuhiko Matsumori, and Takamasa Kayama, and Raymond A Swanson, and Wolfgang H Dillman, and Jialing Liu, and S Scott Panter, and Philip R Weinstein
Department of Neurological Surgery, University of California, San Francisco, California 94143-0112, USA.

OBJECTIVE Transgenic (Tg) mice overexpressing rat heat shock protein 70 (hsp70) demonstrated less infarction than did wild-type (WT) littermates after permanent focal cerebral ischemia. The purpose of this study was to determine whether neuronal injury and apoptosis were reduced in hsp70 Tg mice after transient focal ischemia. The effects of hsp70 overexpression were also evaluated after transient global ischemia or kainic acid (KA)-induced seizures, to verify the results in other excitotoxic stress models. METHODS Transient focal ischemia was produced with middle cerebral artery occlusion via intraluminal suture cannulation. Infarction volumes were assessed 24 hours after 30 minutes of middle cerebral artery occlusion. Transient global ischemia was produced with 25 minutes of bilateral common carotid artery occlusion. KA (30 mg/kg) was administered subcutaneously, and seizure activity was evaluated. The number of eosinophilic neurons was assessed in the CA1 region 72 hours after bilateral common carotid artery occlusion and in the CA3 region 24 hours after KA administration. RESULTS The infarction volume after transient middle cerebral artery occlusion was significantly smaller in hsp70 Tg mice than in WT mice (9.1 +/- 5.7 mm(3) versus 22.4 +/- 16.8 mm(3), P < 0.05). The number of eosinophilic neurons in the CA1 area after bilateral common carotid artery occlusion and in CA3 after KA injection was significantly lower in hsp70 Tg mice than in WT mice (949.1 +/- 1095.5 versus 2406.9 +/- 1380.3, P < 0.05, and 33.8 +/- 45.3 versus 119.4 +/- 112.1, P < 0.05, respectively). Fewer terminal deoxynucleotidyl transferase-mediated biotinylated deoxyuridine triphosphate nick end-labeling-positive cells were observed in hsp70 Tg mice than in WT mice in each model. CONCLUSIONS The results demonstrate that overexpression of hsp70 reduces neuronal injury after ischemia and seizures. The reduction in the number of terminal deoxynucleotidyl transferase-mediated biotinylated deoxyuridine triphosphate nick end-labeling-positive cells in hsp70 Tg mice suggests that hsp70 overexpression might reduce apoptotic cell death.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002546 Ischemic Attack, Transient Brief reversible episodes of focal, nonconvulsive ischemic dysfunction of the brain having a duration of less than 24 hours, and usually less than one hour, caused by transient thrombotic or embolic blood vessel occlusion or stenosis. Events may be classified by arterial distribution, temporal pattern, or etiology (e.g., embolic vs. thrombotic). (From Adams et al., Principles of Neurology, 6th ed, pp814-6) Brain Stem Ischemia, Transient,Cerebral Ischemia, Transient,Crescendo Transient Ischemic Attacks,Transient Ischemic Attack,Anterior Circulation Transient Ischemic Attack,Brain Stem Transient Ischemic Attack,Brain TIA,Brainstem Ischemia, Transient,Brainstem Transient Ischemic Attack,Carotid Circulation Transient Ischemic Attack,Posterior Circulation Transient Ischemic Attack,TIA (Transient Ischemic Attack),Transient Ischemic Attack, Anterior Circulation,Transient Ischemic Attack, Brain Stem,Transient Ischemic Attack, Brainstem,Transient Ischemic Attack, Carotid Circulation,Transient Ischemic Attack, Posterior Circulation,Transient Ischemic Attack, Vertebrobasilar Circulation,Transient Ischemic Attacks, Crescendo,Vertebrobasilar Circulation Transient Ischemic Attack,Attack, Transient Ischemic,Attacks, Transient Ischemic,Brainstem Ischemias, Transient,Cerebral Ischemias, Transient,Ischemia, Transient Brainstem,Ischemia, Transient Cerebral,Ischemias, Transient Brainstem,Ischemias, Transient Cerebral,Ischemic Attacks, Transient,TIA, Brain,TIAs (Transient Ischemic Attack),Transient Brainstem Ischemia,Transient Cerebral Ischemia,Transient Cerebral Ischemias,Transient Ischemic Attacks
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012640 Seizures Clinical or subclinical disturbances of cortical function due to a sudden, abnormal, excessive, and disorganized discharge of brain cells. Clinical manifestations include abnormal motor, sensory and psychic phenomena. Recurrent seizures are usually referred to as EPILEPSY or "seizure disorder." Absence Seizure,Absence Seizures,Atonic Absence Seizure,Atonic Seizure,Clonic Seizure,Complex Partial Seizure,Convulsion,Convulsions,Convulsive Seizure,Convulsive Seizures,Epileptic Seizure,Epileptic Seizures,Generalized Absence Seizure,Generalized Tonic-Clonic Seizures,Jacksonian Seizure,Myoclonic Seizure,Non-Epileptic Seizure,Nonepileptic Seizure,Partial Seizure,Seizure,Seizures, Convulsive,Seizures, Focal,Seizures, Generalized,Seizures, Motor,Seizures, Sensory,Tonic Clonic Seizure,Tonic Seizure,Tonic-Clonic Seizure,Atonic Absence Seizures,Atonic Seizures,Clonic Seizures,Complex Partial Seizures,Convulsion, Non-Epileptic,Generalized Absence Seizures,Myoclonic Seizures,Non-Epileptic Seizures,Nonepileptic Seizures,Partial Seizures,Petit Mal Convulsion,Seizures, Auditory,Seizures, Clonic,Seizures, Epileptic,Seizures, Gustatory,Seizures, Olfactory,Seizures, Somatosensory,Seizures, Tonic,Seizures, Tonic-Clonic,Seizures, Vertiginous,Seizures, Vestibular,Seizures, Visual,Single Seizure,Tonic Seizures,Tonic-Clonic Seizures,Absence Seizure, Atonic,Absence Seizure, Generalized,Absence Seizures, Atonic,Absence Seizures, Generalized,Auditory Seizure,Auditory Seizures,Clonic Seizure, Tonic,Clonic Seizures, Tonic,Convulsion, Non Epileptic,Convulsion, Petit Mal,Convulsions, Non-Epileptic,Focal Seizure,Focal Seizures,Generalized Seizure,Generalized Seizures,Generalized Tonic Clonic Seizures,Generalized Tonic-Clonic Seizure,Gustatory Seizure,Gustatory Seizures,Motor Seizure,Motor Seizures,Non Epileptic Seizure,Non Epileptic Seizures,Non-Epileptic Convulsion,Non-Epileptic Convulsions,Olfactory Seizure,Olfactory Seizures,Partial Seizure, Complex,Partial Seizures, Complex,Seizure, Absence,Seizure, Atonic,Seizure, Atonic Absence,Seizure, Auditory,Seizure, Clonic,Seizure, Complex Partial,Seizure, Convulsive,Seizure, Epileptic,Seizure, Focal,Seizure, Generalized,Seizure, Generalized Absence,Seizure, Generalized Tonic-Clonic,Seizure, Gustatory,Seizure, Jacksonian,Seizure, Motor,Seizure, Myoclonic,Seizure, Non-Epileptic,Seizure, Nonepileptic,Seizure, Olfactory,Seizure, Partial,Seizure, Sensory,Seizure, Single,Seizure, Somatosensory,Seizure, Tonic,Seizure, Tonic Clonic,Seizure, Tonic-Clonic,Seizure, Vertiginous,Seizure, Vestibular,Seizure, Visual,Seizures, Generalized Tonic-Clonic,Seizures, Nonepileptic,Sensory Seizure,Sensory Seizures,Single Seizures,Somatosensory Seizure,Somatosensory Seizures,Tonic Clonic Seizures,Tonic-Clonic Seizure, Generalized,Tonic-Clonic Seizures, Generalized,Vertiginous Seizure,Vertiginous Seizures,Vestibular Seizure,Vestibular Seizures,Visual Seizure,Visual Seizures
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

Daisuke Tsuchiya, and Shwuhuey Hong, and Yasuhiko Matsumori, and Takamasa Kayama, and Raymond A Swanson, and Wolfgang H Dillman, and Jialing Liu, and S Scott Panter, and Philip R Weinstein
August 1992, Brain research,
Daisuke Tsuchiya, and Shwuhuey Hong, and Yasuhiko Matsumori, and Takamasa Kayama, and Raymond A Swanson, and Wolfgang H Dillman, and Jialing Liu, and S Scott Panter, and Philip R Weinstein
April 1997, The European journal of neuroscience,
Daisuke Tsuchiya, and Shwuhuey Hong, and Yasuhiko Matsumori, and Takamasa Kayama, and Raymond A Swanson, and Wolfgang H Dillman, and Jialing Liu, and S Scott Panter, and Philip R Weinstein
September 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
Daisuke Tsuchiya, and Shwuhuey Hong, and Yasuhiko Matsumori, and Takamasa Kayama, and Raymond A Swanson, and Wolfgang H Dillman, and Jialing Liu, and S Scott Panter, and Philip R Weinstein
December 1993, Neurochemistry international,
Daisuke Tsuchiya, and Shwuhuey Hong, and Yasuhiko Matsumori, and Takamasa Kayama, and Raymond A Swanson, and Wolfgang H Dillman, and Jialing Liu, and S Scott Panter, and Philip R Weinstein
July 2003, Neurosurgery,
Daisuke Tsuchiya, and Shwuhuey Hong, and Yasuhiko Matsumori, and Takamasa Kayama, and Raymond A Swanson, and Wolfgang H Dillman, and Jialing Liu, and S Scott Panter, and Philip R Weinstein
January 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
Daisuke Tsuchiya, and Shwuhuey Hong, and Yasuhiko Matsumori, and Takamasa Kayama, and Raymond A Swanson, and Wolfgang H Dillman, and Jialing Liu, and S Scott Panter, and Philip R Weinstein
January 2001, Experimental brain research,
Daisuke Tsuchiya, and Shwuhuey Hong, and Yasuhiko Matsumori, and Takamasa Kayama, and Raymond A Swanson, and Wolfgang H Dillman, and Jialing Liu, and S Scott Panter, and Philip R Weinstein
October 1996, Transplantation proceedings,
Daisuke Tsuchiya, and Shwuhuey Hong, and Yasuhiko Matsumori, and Takamasa Kayama, and Raymond A Swanson, and Wolfgang H Dillman, and Jialing Liu, and S Scott Panter, and Philip R Weinstein
April 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
Daisuke Tsuchiya, and Shwuhuey Hong, and Yasuhiko Matsumori, and Takamasa Kayama, and Raymond A Swanson, and Wolfgang H Dillman, and Jialing Liu, and S Scott Panter, and Philip R Weinstein
April 2001, Brain research,
Copied contents to your clipboard!