Serial proton magnetic resonance spectroscopy of the brain in children undergoing cardiac surgery. 2003

Stephen Ashwal, and Barbara A Holshouser, and Michael J del Rio, and Karen A Tong, and Richard L Applegate, and Leonard L Bailey
Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.

We used proton magnetic resonance spectroscopy to study 11 children (age < 8 years) with congenital heart disease undergoing cardiopulmonary bypass to determine whether low (10 +/- 4; n = 6) vs high (20 +/- 4; n = 5) perfusate hematocrits during bypass resulted in changes in brain metabolites which correlate with neurologic injury. Long and short echo time single voxel magnetic resonance spectroscopy in occipital gray matter and neurologic assessment were performed preoperatively and 2 and 5 days postoperatively. We also determined whether prolonged periods at low flow rates during bypass affected spectroscopy variables. We found no significant differences in metabolite ratios between the low vs high hematocrit groups or the lower vs higher flow rate groups (repeated measures analysis of variance of observation ranks converted to normal scores). However, our study was limited by statistical power due to the small sample size, therefore no conclusions could be made. Additional studies involving a greater number of patients are necessary. In all 11 children, magnetic resonance spectroscopy detected a significant decrease in brain N-acetyl-aspartate, and increases in myoinositol and glutamate/glutamine after surgery (Quade test) demonstrating that magnetic resonance spectroscopy is sensitive in detecting subtle postoperative changes in brain metabolites.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D007294 Inositol An isomer of glucose that has traditionally been considered to be a B vitamin although it has an uncertain status as a vitamin and a deficiency syndrome has not been identified in man. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1379) Inositol phospholipids are important in signal transduction. Myoinositol,Chiro-Inositol,Mesoinositol,Chiro Inositol
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009778 Occipital Lobe Posterior portion of the CEREBRAL HEMISPHERES responsible for processing visual sensory information. It is located posterior to the parieto-occipital sulcus and extends to the preoccipital notch. Annectant Gyrus,Calcarine Fissure,Calcarine Sulcus,Cuneate Lobule,Cuneus,Cuneus Cortex,Cuneus Gyrus,Gyrus Lingualis,Lingual Gyrus,Lunate Sulcus,Medial Occipitotemporal Gyrus,Occipital Cortex,Occipital Gyrus,Occipital Region,Occipital Sulcus,Sulcus Calcarinus,Calcarine Fissures,Calcarinus, Sulcus,Cortex, Cuneus,Cortex, Occipital,Cortices, Cuneus,Cortices, Occipital,Cuneate Lobules,Cuneus Cortices,Fissure, Calcarine,Fissures, Calcarine,Gyrus Linguali,Gyrus, Annectant,Gyrus, Cuneus,Gyrus, Lingual,Gyrus, Medial Occipitotemporal,Gyrus, Occipital,Linguali, Gyrus,Lingualis, Gyrus,Lobe, Occipital,Lobes, Occipital,Lobule, Cuneate,Lobules, Cuneate,Occipital Cortices,Occipital Lobes,Occipital Regions,Occipitotemporal Gyrus, Medial,Region, Occipital,Regions, Occipital,Sulcus, Calcarine,Sulcus, Lunate,Sulcus, Occipital
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002315 Cardiopulmonary Bypass Diversion of the flow of blood from the entrance of the right atrium directly to the aorta (or femoral artery) via an oxygenator thus bypassing both the heart and lungs. Heart-Lung Bypass,Bypass, Cardiopulmonary,Bypass, Heart-Lung,Bypasses, Cardiopulmonary,Bypasses, Heart-Lung,Cardiopulmonary Bypasses,Heart Lung Bypass,Heart-Lung Bypasses
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D006330 Heart Defects, Congenital Developmental abnormalities involving structures of the heart. These defects are present at birth but may be discovered later in life. Congenital Heart Disease,Heart Abnormalities,Abnormality, Heart,Congenital Heart Defect,Congenital Heart Defects,Defects, Congenital Heart,Heart Defect, Congenital,Heart, Malformation Of,Congenital Heart Diseases,Defect, Congenital Heart,Disease, Congenital Heart,Heart Abnormality,Heart Disease, Congenital,Malformation Of Heart,Malformation Of Hearts
D006400 Hematocrit The volume of packed RED BLOOD CELLS in a blood specimen. The volume is measured by centrifugation in a tube with graduated markings, or with automated blood cell counters. It is an indicator of erythrocyte status in disease. For example, ANEMIA shows a low value; POLYCYTHEMIA, a high value. Erythrocyte Volume, Packed,Packed Red-Cell Volume,Erythrocyte Volumes, Packed,Hematocrits,Packed Erythrocyte Volume,Packed Erythrocyte Volumes,Packed Red Cell Volume,Packed Red-Cell Volumes,Red-Cell Volume, Packed,Red-Cell Volumes, Packed,Volume, Packed Erythrocyte,Volume, Packed Red-Cell,Volumes, Packed Erythrocyte,Volumes, Packed Red-Cell

Related Publications

Stephen Ashwal, and Barbara A Holshouser, and Michael J del Rio, and Karen A Tong, and Richard L Applegate, and Leonard L Bailey
September 1990, Investigative radiology,
Stephen Ashwal, and Barbara A Holshouser, and Michael J del Rio, and Karen A Tong, and Richard L Applegate, and Leonard L Bailey
October 1992, Lancet (London, England),
Stephen Ashwal, and Barbara A Holshouser, and Michael J del Rio, and Karen A Tong, and Richard L Applegate, and Leonard L Bailey
February 1994, Brain : a journal of neurology,
Stephen Ashwal, and Barbara A Holshouser, and Michael J del Rio, and Karen A Tong, and Richard L Applegate, and Leonard L Bailey
July 2001, No to hattatsu = Brain and development,
Stephen Ashwal, and Barbara A Holshouser, and Michael J del Rio, and Karen A Tong, and Richard L Applegate, and Leonard L Bailey
January 1999, Italian journal of neurological sciences,
Stephen Ashwal, and Barbara A Holshouser, and Michael J del Rio, and Karen A Tong, and Richard L Applegate, and Leonard L Bailey
January 2001, Journal of computer assisted tomography,
Stephen Ashwal, and Barbara A Holshouser, and Michael J del Rio, and Karen A Tong, and Richard L Applegate, and Leonard L Bailey
July 2001, Neurology,
Stephen Ashwal, and Barbara A Holshouser, and Michael J del Rio, and Karen A Tong, and Richard L Applegate, and Leonard L Bailey
August 1992, Neurosurgery,
Stephen Ashwal, and Barbara A Holshouser, and Michael J del Rio, and Karen A Tong, and Richard L Applegate, and Leonard L Bailey
April 1994, American journal of obstetrics and gynecology,
Stephen Ashwal, and Barbara A Holshouser, and Michael J del Rio, and Karen A Tong, and Richard L Applegate, and Leonard L Bailey
October 2002, Neuroradiology,
Copied contents to your clipboard!