Mechanistic implications of alterations in HL-60 cell nascent DNA after exposure to 1-beta-D-arabinofuranosylcytosine. 1992

D D Ross, and D P Cuddy, and N Cohen, and D R Hensley
Division of Developmental Therapeutics, University of Maryland Cancer Center, Baltimore 21201.

To improve our understanding of the mechanism of 1-beta-D-arabinofuranosylcytosine (ara-C) incorporation into DNA, we investigated the physical properties (size, position of nucleoside incorporation) of small fragments of nascent DNA (nDNA) obtained by pH-step alkaline elution of intact HL-60 cells following their exposure to ara-C. In the pH-step alkaline elution procedure, the smallest fragments of nDNA elute at pH 11. Anion-exchange high-performance liquid chromatography (HPLC) of nDNA obtained by 1 h elution at pH 11.0 of lysed HL-60 cells revealed a preponderance of nDNA fragments ranging from 0.5 to 40 kb in control ([3H]-dThd-labeled) cells. Exposure of cells to ara-C (0.8-1 microM) resulted in a loss of the preponderance of radiolabel in fragments of 0.5-40 kb along with redistribution of the radiolabel (from [3H]-dThd or [3H]-ara-C) into smaller nDNA fragments (predominantly < 100 bases in length) as determined by HPLC. We used the ability of pH-step alkaline elution to provide these small nDNA fragments produced by ara-C to investigate the paradoxical behavior of ara-C as a chain terminator in cell-free DNA synthetic systems while being incorporated into an internucleotide position in intact cells. Following the digestion of purified nDNA with micrococcal nuclease and spleen phosphodiesterase II, the proportion of radiolabel in 3'-dNMP (indicating an internucleotide position) or free nucleoside (indicating a chain terminus position) was determined by reverse-phase HPLC. In digests of prelabeled genomic DNA, as expected, > 90% of the radiolabel from [14C]-dThd or [3H]-ara-C was found to exist in an internucleotide position (as determined by co-chromatography with authentic 3'-dTMP or 3'-ara-CMP). In contrast, digests of nDNA that eluted at pH 11.0 revealed a significantly higher proportion of radiolabel in the chain terminus position (29%-35%) when the nDNA was obtained from cells exposed to 1 microM [3H]-ara-C as compared with cells exposed to [3H]-dThd or [3H]-dCyd alone (< 10%). These data obtained from pH-step alkaline elution of intact cells suggest that by causing the inhibition of chain elongation while failing to inhibit the formation of new nDNA replication intermediates, ara-C exposure leads to the production of very small nDNA fragments. This relative chain-terminating effect of ara-C is most apparent in the small nDNA replication fragments that elute at pH 11.0.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007951 Leukemia, Myeloid Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites. Granulocytic Leukemia,Leukemia, Granulocytic,Leukemia, Myelocytic,Leukemia, Myelogenous,Myelocytic Leukemia,Myelogenous Leukemia,Myeloid Leukemia,Leukemia, Monocytic, Chronic,Monocytic Leukemia, Chronic,Chronic Monocytic Leukemia,Chronic Monocytic Leukemias,Granulocytic Leukemias,Leukemia, Chronic Monocytic,Leukemias, Chronic Monocytic,Leukemias, Granulocytic,Leukemias, Myelocytic,Leukemias, Myelogenous,Leukemias, Myeloid,Monocytic Leukemias, Chronic,Myelocytic Leukemias,Myelogenous Leukemias,Myeloid Leukemias
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003561 Cytarabine A pyrimidine nucleoside analog that is used mainly in the treatment of leukemia, especially acute non-lymphoblastic leukemia. Cytarabine is an antimetabolite antineoplastic agent that inhibits the synthesis of DNA. Its actions are specific for the S phase of the cell cycle. It also has antiviral and immunosuppressant properties. (From Martindale, The Extra Pharmacopoeia, 30th ed, p472) Ara-C,Arabinofuranosylcytosine,Arabinosylcytosine,Cytosine Arabinoside,Aracytidine,Aracytine,Cytarabine Hydrochloride,Cytonal,Cytosar,Cytosar-U,beta-Ara C,Ara C,Arabinoside, Cytosine,Cytosar U,beta Ara C
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

D D Ross, and D P Cuddy, and N Cohen, and D R Hensley
April 1984, Cancer research,
D D Ross, and D P Cuddy, and N Cohen, and D R Hensley
June 1994, The Journal of biological chemistry,
D D Ross, and D P Cuddy, and N Cohen, and D R Hensley
February 1988, Cancer research,
D D Ross, and D P Cuddy, and N Cohen, and D R Hensley
January 1988, Medical oncology and tumor pharmacotherapy,
D D Ross, and D P Cuddy, and N Cohen, and D R Hensley
May 1975, Biomedicine / [publiee pour l'A.A.I.C.I.G.],
Copied contents to your clipboard!