Analysis of translesion replication across an abasic site by DNA polymerase IV of Escherichia coli. 2003

Ayelet Maor-Shoshani, and Ken Hayashi, and Haruo Ohmori, and Zvi Livneh
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.

Unrepaired replication-blocking DNA lesions are bypassed by specialized DNA polymerases, members of the Y super-family. In Escherichia coli the major lesion bypass DNA polymerase is pol V, whereas the function of its homologue, pol IV, is not fully understood. In vivo analysis showed that pol V has a major role in bypass across an abasic site analog, with little or no involvement of pol IV. This can result from the inability of pol IV to bypass the abasic site, or from in vivo regulation of its activity. In vitro analysis revealed that purified pol IV, in the presence of the beta subunit DNA sliding clamp, and the gamma complex clamp loader, bypassed a synthetic abasic site with very high efficiency, reaching 73% in 2 min. Bypass was observed also in the absence of the processivity proteins, albeit at a 10- to 20-fold lower rate. DNA sequence analysis revealed that pol IV skips over the abasic site, producing primarily small deletions. The RecA protein inhibited bypass by pol IV, but this inhibition was alleviated by single-strand binding protein (SSB). The fact that the in vitro bypass ability of pol IV is not manifested under in vivo conditions suggests the presence of a regulatory factor, which might be involved in controlling the access of the bypass polymerases to the damaged site in DNA.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011938 Rec A Recombinases A family of recombinases initially identified in BACTERIA. They catalyze the ATP-driven exchange of DNA strands in GENETIC RECOMBINATION. The product of the reaction consists of a duplex and a displaced single-stranded loop, which has the shape of the letter D and is therefore called a D-loop structure. Rec A Protein,RecA Protein,Recombinases, Rec A
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

Ayelet Maor-Shoshani, and Ken Hayashi, and Haruo Ohmori, and Zvi Livneh
March 2015, The Journal of biological chemistry,
Ayelet Maor-Shoshani, and Ken Hayashi, and Haruo Ohmori, and Zvi Livneh
January 2014, PloS one,
Ayelet Maor-Shoshani, and Ken Hayashi, and Haruo Ohmori, and Zvi Livneh
November 2009, The Journal of biological chemistry,
Ayelet Maor-Shoshani, and Ken Hayashi, and Haruo Ohmori, and Zvi Livneh
October 2008, The Journal of biological chemistry,
Ayelet Maor-Shoshani, and Ken Hayashi, and Haruo Ohmori, and Zvi Livneh
August 2005, Molecular microbiology,
Ayelet Maor-Shoshani, and Ken Hayashi, and Haruo Ohmori, and Zvi Livneh
April 2009, Structure (London, England : 1993),
Ayelet Maor-Shoshani, and Ken Hayashi, and Haruo Ohmori, and Zvi Livneh
February 2011, Journal of molecular biology,
Ayelet Maor-Shoshani, and Ken Hayashi, and Haruo Ohmori, and Zvi Livneh
January 2018, PLoS genetics,
Ayelet Maor-Shoshani, and Ken Hayashi, and Haruo Ohmori, and Zvi Livneh
May 1999, Biochemistry,
Ayelet Maor-Shoshani, and Ken Hayashi, and Haruo Ohmori, and Zvi Livneh
March 2001, The Journal of biological chemistry,
Copied contents to your clipboard!