Immunohistochemical localization of ryanodine binding proteins in the central nervous system of gymnotiform fish. 1992

G K Zupanc, and J A Airey, and L Maler, and J L Sutko, and M H Ellisman
Department of Neurosciences, University of California, San Diego, La Jolla 92093.

The ryanodine receptor, an integral membrane protein of the sarcoplasmic reticulum in muscle, embodies a high conductance channel permeable to calcium ions. Recent studies have identified ryanodine-binding proteins in avian and mammalian central nervous systems. These neuronal ryanodine receptors appear to function as Ca2+ channels which may gate the release of Ca2+ from caffeine-sensitive intracellular pools in neurons. In the present investigation, we employed monoclonal antibodies against ryanodine-binding proteins of avian muscle cells to the brain of weakly electric gymnotiform fish. Immunoprecipitation and Western blot analysis revealed two isoforms in the fish brain, with molecular weights comparable to those of avian and fish muscle ryanodine-binding proteins. By employing immunohistochemical techniques, we mapped these proteins in fish brain. Ryanodine receptor-like immunoreactivity was found in nerve cell bodies as well as dendrites and axonal processes. The ryanodine-binding protein is distributed throughout the neuraxis in specific cell types of the gymnotiform brain. In the telencephalon, immunoreactive cells were found in the glomerular layer of the olfactory bulb, in the supracommissural subdivision of the ventral telencephalon, and in the intermediate rostral subdivision of the ventral telencephalon. In the diencephalon, immunoreactive cells or fibers were observed in the nucleus prethalamicus and the habenula, within the nucleus at the base of the optic tract and the adjacent dorsal tegmental nucleus, the pretectal nuclei A and B, and the nucleus electrosensorius. In addition, immunopositive cells were seen in several nuclei of the hypothalamus, with the inferior and lateral subdivision of the nucleus recessus lateralis displaying the highest concentration of neurons. In the mesencephalon, the optic tectum contained the greatest number of immunopositive cells. In the rhombencephalon, labelling was seen in the nucleus of the lateral valvula, central gray, lateral tegmental nucleus, in boundary cells of the nucleus praeminentialis, efferent octavolateral nucleus, an area adjacent to the medial edge of the lateral reticular nucleus, nucleus medialis, and electrosensory lateral line lobe. As in avian brain, cerebellar Purkinje cells were positive for ryanodine-binding protein, although only subsets of Purkinje cells were labelled.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D004027 Diencephalon The paired caudal parts of the PROSENCEPHALON from which the THALAMUS; HYPOTHALAMUS; EPITHALAMUS; and SUBTHALAMUS are derived. Interbrain,Interbrains
D004555 Electric Fish Fishes which generate an electric discharge. The voltage of the discharge varies from weak to strong in various groups of fish. The ELECTRIC ORGAN and electroplax are of prime interest in this group. They occur in more than one family. Mormyrid,Mormyridae,Elephantfish,Elephantfishes,Fish, Electric,Mormyrids

Related Publications

G K Zupanc, and J A Airey, and L Maler, and J L Sutko, and M H Ellisman
August 1990, Neuron,
G K Zupanc, and J A Airey, and L Maler, and J L Sutko, and M H Ellisman
October 1992, Neuroscience research,
G K Zupanc, and J A Airey, and L Maler, and J L Sutko, and M H Ellisman
January 1989, Acta neuropathologica,
G K Zupanc, and J A Airey, and L Maler, and J L Sutko, and M H Ellisman
February 2004, Current protocols in neuroscience,
G K Zupanc, and J A Airey, and L Maler, and J L Sutko, and M H Ellisman
May 1994, Seikagaku. The Journal of Japanese Biochemical Society,
G K Zupanc, and J A Airey, and L Maler, and J L Sutko, and M H Ellisman
September 1977, Proceedings of the National Academy of Sciences of the United States of America,
G K Zupanc, and J A Airey, and L Maler, and J L Sutko, and M H Ellisman
May 2004, The Journal of comparative neurology,
G K Zupanc, and J A Airey, and L Maler, and J L Sutko, and M H Ellisman
June 1995, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
G K Zupanc, and J A Airey, and L Maler, and J L Sutko, and M H Ellisman
November 2003, Cell and tissue research,
G K Zupanc, and J A Airey, and L Maler, and J L Sutko, and M H Ellisman
December 1994, Glycobiology,
Copied contents to your clipboard!