Synaptic dynamics on different time scales in a parallel fiber feedback pathway of the weakly electric fish. 2004

John E Lewis, and Leonard Maler
Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada. jlewis@uottawa.ca

Synaptic dynamics comprise a variety of interacting processes acting on a wide range of time scales. This enables a synapse to perform a large array of computations, from temporal and spatial filtering to associative learning. In this study, we describe how changing synaptic gain via long-term plasticity can act to shape the temporal filtering of a synapse through modulation of short-term plasticity. In the weakly electric fish, parallel fibers from cerebellar granule cells provide massive feedback inputs to the pyramidal neurons of the electrosensory lateral line lobe. We demonstrate a long-term synaptic enhancement (LTE) of these synapses that is biochemically similar to the presynaptic long-term potentiation expressed by parallel fibers in the mammalian cerebellum. Using a novel stimulation protocol and a simple modeling paradigm, we then quantify the changes in short-term plasticity during the induction of LTE and show that these changes can be explained by gradual changes in only one model parameter, that which is associated with the baseline probability of transmitter release. These changes lead to a shift in the spike frequency preference of the synapse, suggesting that long-term plasticity is not only involved in controlling the gain of the parallel fiber synapse, but also provides a means of controlling synaptic filtering over multiple time scales.

UI MeSH Term Description Entries
D008297 Male Males
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D004555 Electric Fish Fishes which generate an electric discharge. The voltage of the discharge varies from weak to strong in various groups of fish. The ELECTRIC ORGAN and electroplax are of prime interest in this group. They occur in more than one family. Mormyrid,Mormyridae,Elephantfish,Elephantfishes,Fish, Electric,Mormyrids
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D005260 Female Females
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

John E Lewis, and Leonard Maler
October 2020, Scientific reports,
John E Lewis, and Leonard Maler
May 1968, Biophysik,
John E Lewis, and Leonard Maler
April 2024, Current biology : CB,
John E Lewis, and Leonard Maler
January 1984, Annual review of physiology,
John E Lewis, and Leonard Maler
September 2006, The Journal of experimental biology,
John E Lewis, and Leonard Maler
September 1998, The Journal of comparative neurology,
John E Lewis, and Leonard Maler
October 1990, The Journal of comparative neurology,
John E Lewis, and Leonard Maler
January 2003, Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections,
John E Lewis, and Leonard Maler
February 2017, Bioinspiration & biomimetics,
Copied contents to your clipboard!