Smooth, slow and smart muscle motors. 2003

Anders Arner, and Mia Löfgren, and Ingo Morano
Department of Physiological Sciences, Medical Faculty, Lund University, BMC F11, Tornavägen 10, SE-221 84 Lund, Sweden. Anders.Arner@mphy.lu.se

Smooth muscle is a slow and economical muscle with a large variability in contractile properties. This review describes results regarding the relation between expression of myosin isoforms and the contraction of smooth muscle. The focus of the review is on studies of the organised contractile system in the smooth muscle tissue. The role of the myosin heavy chain variants formed by alternative splicing in the myosin heavy chain tail (SM1, SM2 isoforms) and head (SM-A SM-B isoforms) regions, as well as the role of essential light chains (LC17a, LC17b isoforms) for the variability of contractile properties are discussed. Smooth muscle also has the ability to alter its contractile properties in response to altered functional demands in vivo, e.g. during hypertrophic growth of urinary bladder, intestine, uterus and vessels and in response to altered hormone levels. These alterations involve changes in myosin expression and altered contractile kinetics. Non-muscle myosin has been shown to have a contractile function in some smooth muscle tissues and recent data on the kinetic properties of non-muscle myosin filaments in smooth muscle tissue are described.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D018656 Muscle Fibers, Fast-Twitch Skeletal muscle fibers characterized by their expression of the Type II MYOSIN HEAVY CHAIN isoforms which have high ATPase activity and effect several other functional properties - shortening velocity, power output, rate of tension redevelopment. Several fast types have been identified. Muscle Fibers, Intermediate,Muscle Fibers, Type II,Muscle Fibers, White,Fast-Twitch Muscle Fiber,Fast-Twitch Muscle Fibers,Fiber, Fast-Twitch Muscle,Fiber, Intermediate Muscle,Fiber, White Muscle,Fibers, Fast-Twitch Muscle,Fibers, Intermediate Muscle,Fibers, White Muscle,Intermediate Muscle Fiber,Intermediate Muscle Fibers,Muscle Fiber, Fast-Twitch,Muscle Fiber, Intermediate,Muscle Fiber, White,Muscle Fibers, Fast Twitch,White Muscle Fiber,White Muscle Fibers
D018657 Muscle Fibers, Slow-Twitch Skeletal muscle fibers characterized by their expression of the Type I MYOSIN HEAVY CHAIN isoforms which have low ATPase activity and effect several other functional properties - shortening velocity, power output, rate of tension redevelopment. Muscle Fibers, Red,Muscle Fibers, Type I,Fiber, Red Muscle,Fiber, Slow-Twitch Muscle,Fibers, Red Muscle,Fibers, Slow-Twitch Muscle,Muscle Fiber, Red,Muscle Fiber, Slow-Twitch,Muscle Fibers, Slow Twitch,Red Muscle Fiber,Red Muscle Fibers,Slow-Twitch Muscle Fiber,Slow-Twitch Muscle Fibers
D018994 Myosin Light Chains The smaller subunits of MYOSINS that bind near the head groups of MYOSIN HEAVY CHAINS. The myosin light chains have a molecular weight of about 20 KDa and there are usually one essential and one regulatory pair of light chains associated with each heavy chain. Many myosin light chains that bind calcium are considered "calmodulin-like" proteins. Myosin Alkali Light Chains,Myosin Alkali Light Chain,Myosin Essential Light Chain,Myosin Essential Light Chains,Myosin Light Chain,Myosin Regulatory Light Chain,Myosin Regulatory Light Chains,Light Chain, Myosin,Light Chains, Myosin
D018995 Myosin Heavy Chains The larger subunits of MYOSINS. The heavy chains have a molecular weight of about 230 kDa and each heavy chain is usually associated with a dissimilar pair of MYOSIN LIGHT CHAINS. The heavy chains possess actin-binding and ATPase activity. Myosin Heavy Chain,Heavy Chain, Myosin,Heavy Chains, Myosin

Related Publications

Anders Arner, and Mia Löfgren, and Ingo Morano
July 2019, Chemistry, an Asian journal,
Anders Arner, and Mia Löfgren, and Ingo Morano
August 2003, Journal of molecular medicine (Berlin, Germany),
Anders Arner, and Mia Löfgren, and Ingo Morano
January 2007, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society,
Anders Arner, and Mia Löfgren, and Ingo Morano
September 1987, Journal of clinical hypertension,
Anders Arner, and Mia Löfgren, and Ingo Morano
March 2001, The Journal of pathology,
Anders Arner, and Mia Löfgren, and Ingo Morano
February 2002, Current opinion in cell biology,
Anders Arner, and Mia Löfgren, and Ingo Morano
June 2009, Lab on a chip,
Anders Arner, and Mia Löfgren, and Ingo Morano
January 1992, Advances in experimental medicine and biology,
Anders Arner, and Mia Löfgren, and Ingo Morano
January 1979, General pharmacology,
Anders Arner, and Mia Löfgren, and Ingo Morano
March 1972, Nihon Heikatsukin Gakkai zasshi,
Copied contents to your clipboard!