Ion-channel currents of smooth muscle cells isolated from the prostate of guinea-pig. 2003

S-J Oh, and K M Kim, and Y-S Chung, and E-K Hong, and S Y Shin, and S J Kim
Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.

OBJECTIVE To characterize the voltage-activated ion-channel currents in guinea-pig prostate smooth muscle cells (GPSMCs). METHODS GPSMCs were isolated using collagenase, and used in a whole-cell patch clamp study. RESULTS When GPSMCs were dialysed with a CsCl solution all the outward K+ currents were blocked and the step-like depolarization (holding voltage -70 mV) of the cell membrane evoked inward currents that were completely blocked by nifedipine (1 micromol/L). With KCl solution, step depolarizations showed outward K+ currents composed of fast, transient outward current (Ito) and outward currents that did not inactivate. Ito was resistant to a high concentration of tetraethylammonium (TEA, 5 mmol/L) but was blocked by 4-aminopyridine (5 mmol/L). The half-activation and half-inactivation voltages of Ito were 6 mV and -58 mV, respectively. With low Ca2+ buffer (0.1 mmol/L EGTA) in the solution, there were spontaneous transient outward currents (STOCs) at depolarized membrane voltages (0 mV). STOCs were blocked by TEA (1 mmol/L) or iberiotoxin (10 nmol/L) but were insensitive to apamin (100 nmol/L). CONCLUSIONS This voltage-clamp study showed that GPSMCs have l-type Ca2+ channels and more than two types of K+ channels. The voltage- and time-dependent changes of these ion channels and their interactions might be important in forming action potentials and regulating contractility.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008297 Male Males
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D011467 Prostate A gland in males that surrounds the neck of the URINARY BLADDER and the URETHRA. It secretes a substance that liquefies coagulated semen. It is situated in the pelvic cavity behind the lower part of the PUBIC SYMPHYSIS, above the deep layer of the triangular ligament, and rests upon the RECTUM. Prostates
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings
D026902 Potassium Channel Blockers A class of drugs that act by inhibition of potassium efflux through cell membranes. Blockade of potassium channels prolongs the duration of ACTION POTENTIALS. They are used as ANTI-ARRHYTHMIA AGENTS and VASODILATOR AGENTS. Channel Blockers, Potassium,Potassium Channel Blocker,Blocker, Potassium Channel,Blockers, Potassium Channel,Channel Blocker, Potassium

Related Publications

S-J Oh, and K M Kim, and Y-S Chung, and E-K Hong, and S Y Shin, and S J Kim
January 1991, Pflugers Archiv : European journal of physiology,
S-J Oh, and K M Kim, and Y-S Chung, and E-K Hong, and S Y Shin, and S J Kim
April 1990, Pflugers Archiv : European journal of physiology,
S-J Oh, and K M Kim, and Y-S Chung, and E-K Hong, and S Y Shin, and S J Kim
July 1994, European journal of pharmacology,
S-J Oh, and K M Kim, and Y-S Chung, and E-K Hong, and S Y Shin, and S J Kim
May 2004, The Prostate,
S-J Oh, and K M Kim, and Y-S Chung, and E-K Hong, and S Y Shin, and S J Kim
December 1985, Pflugers Archiv : European journal of physiology,
S-J Oh, and K M Kim, and Y-S Chung, and E-K Hong, and S Y Shin, and S J Kim
April 1989, Journal of applied physiology (Bethesda, Md. : 1985),
S-J Oh, and K M Kim, and Y-S Chung, and E-K Hong, and S Y Shin, and S J Kim
September 2004, The Journal of urology,
S-J Oh, and K M Kim, and Y-S Chung, and E-K Hong, and S Y Shin, and S J Kim
April 1989, The Journal of physiology,
S-J Oh, and K M Kim, and Y-S Chung, and E-K Hong, and S Y Shin, and S J Kim
May 2019, American journal of physiology. Cell physiology,
S-J Oh, and K M Kim, and Y-S Chung, and E-K Hong, and S Y Shin, and S J Kim
June 1993, The American journal of physiology,
Copied contents to your clipboard!