Muscle- and fibre type-specific expression of glucose transporter 4, glycogen synthase and glycogen phosphorylase proteins in human skeletal muscle. 2004

Jens R Daugaard, and Erik A Richter
Institute of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark. JRDa@novonordisk.com

The muscle- and fibre type-specific expression of skeletal muscle glucose transporter 4 (GLUT4), glycogen synthase (GS) and glycogen phosphorylase (GP) was investigated in six young male subjects. Single muscle fibres were dissected from vastus lateralis (VL), soleus (SO) and triceps brachii (TB) muscle biopsy samples. On the basis of myosin heavy chain (MHC) expression, fibres were pooled into three groups (MHC I, MHC IIA and MHC IIX) and the GLUT4, GS and GP content of 15-40 pooled fibres determined using SDS-PAGE and immunological detection. In VL, the GLUT4 content in the pooled muscle fibres expressing MHC I was approximately 33% higher ( P<0.05) than in fibres expressing MHC IIA or IIX. There was no difference in GLUT4 content between fibres expressing MHC IIA or IIX, nor were there any differences in GS and GP content between any of the fibre types. In SO, there was no difference in GLUT4, GS and GP between fibres expressing MHC I or IIA. No fibres expressing type IIX were detected. In TB, fibres expressing MHC IIA and IIX had significantly ( P<0.05) more GP (66% and 55 % in MHC IIA and MHCIIX, respectively) than those expressing MHC I, whilst there was no difference in GP between MHC IIA and MHC IIX fibres. The GLUT4 and the GS content was similar in fibres expressing MHC I, IIA and IIX in the TB. Our data directly demonstrate that some proteins, like GLUT4 and GP, are expressed in a fibre type-specific manner in some, but not all, muscles, whilst other proteins, like GS, are not. In human skeletal muscle the GLUT4, GS and GP content thus seems to be related primarily to factors other than the fibre type as defined by the expression of contractile protein. These findings imply that it is not possible to generalize fibre type-dependent protein expression on the basis of biopsies from only one muscle.

UI MeSH Term Description Entries
D008297 Male Males
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D006006 Glycogen Synthase An enzyme that catalyzes the transfer of D-glucose from UDPglucose into 1,4-alpha-D-glucosyl chains. EC 2.4.1.11. Glycogen (Starch) Synthase,Glycogen Synthetase,Glycogen Synthase I,Synthase D,Synthase I,UDP-Glucose Glycogen Glucosyl Transferase,Synthase, Glycogen,Synthetase, Glycogen,UDP Glucose Glycogen Glucosyl Transferase
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D001706 Biopsy Removal and pathologic examination of specimens from the living body. Biopsies
D014020 Tissue Extracts Preparations made from animal tissues or organs (ANIMAL STRUCTURES). They usually contain many components, any one of which may be pharmacologically or physiologically active. Tissue extracts may contain specific, but uncharacterized factors or proteins with specific actions. Extracts, Tissue
D051275 Glucose Transporter Type 4 A glucose transport protein found in mature MUSCLE CELLS and ADIPOCYTES. It promotes transport of glucose from the BLOOD into target TISSUES. The inactive form of the protein is localized in CYTOPLASMIC VESICLES. In response to INSULIN, it is translocated to the PLASMA MEMBRANE where it facilitates glucose uptake. GLUT-4 Protein,GLUT4 Protein,Insulin-Responsive Glucose Transporter,SLC2A4 Protein,Solute Carrier Family 2, Facilitated Glucose Transporter, Member 4 Protein,GLUT 4 Protein,Glucose Transporter, Insulin-Responsive,Insulin Responsive Glucose Transporter
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles

Related Publications

Jens R Daugaard, and Erik A Richter
March 2005, American journal of veterinary research,
Jens R Daugaard, and Erik A Richter
July 1987, The Journal of clinical investigation,
Jens R Daugaard, and Erik A Richter
November 1973, Life sciences,
Jens R Daugaard, and Erik A Richter
May 1979, The Journal of biological chemistry,
Jens R Daugaard, and Erik A Richter
September 2000, American journal of physiology. Endocrinology and metabolism,
Jens R Daugaard, and Erik A Richter
March 2001, Experimental physiology,
Jens R Daugaard, and Erik A Richter
April 2006, Clinical and experimental pharmacology & physiology,
Jens R Daugaard, and Erik A Richter
January 1983, Acta physiologica Scandinavica. Supplementum,
Copied contents to your clipboard!