Role of interferon-gamma and nitric oxide in the neuropathogenesis of avirulent Semliki Forest virus infection. 2003

B Keogh, and G J Atkins, and K H G Mills, and B J Sheahan
Department of Veterinary Pathology, Faculty of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland.

Semliki Forest virus (SFV) infection of mice provides a useful model for the analysis of viral neuropathogenesis. In this study, the roles of interferon (IFN)-gamma and nitric oxide (NO) in the pathogenesis of SFV infection were assessed using mice deficient in inducible nitric oxide synthase (iNOS-/-), an enzyme important in the production of NO, and mice deficient in IFN-gamma receptor (IFN-gammaR-/-). Gene-knockout and wildtype mice were infected intranasally with the avirulent A7 strain of SFV and neuropathological lesions were correlated with levels of IFN-gamma, tumour necrosis factor (TNF)-alpha and interleukin (IL)-10 in the olfactory bulbs and frontal cortex. Lesions in IFN-gammaR-/- mice were characterized by higher levels of neuronal necrosis than in wildtype mice. The higher levels of neuronal necrosis were associated with increased levels of SFV antigen in neurones and increased numbers of macrophages and B cells. Relative differences in the severity of demyelination between IFN-gammaR-/- and wildtype mice were not detected. Similar levels of neuronal necrosis and SFV antigen labelling occurred in iNOS-/- mice and wildtype mice and levels of demyelination and macrophage infiltration in the iNOS-/- mice were lower than those in the wildtype strain. A rapid, but transient increase in the concentration of IFN-gamma was demonstrated in the frontal cortex of all infected mice samples. IL-10 levels in the frontal cortex and olfactory bulbs of SFV-infected iNOS-/- mice exceeded those present in the wildtype mice. This study, taken with our previous reports, provides further evidence that type 1 T cell responses are important in the control of brain viral clearance and the prevention of neuronal necrosis, but not in the development of demyelination.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009336 Necrosis The death of cells in an organ or tissue due to disease, injury or failure of the blood supply.
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003711 Demyelinating Diseases Diseases characterized by loss or dysfunction of myelin in the central or peripheral nervous system. Clinically Isolated CNS Demyelinating Syndrome,Clinically Isolated Syndrome, CNS Demyelinating,Demyelinating Disorders,Demyelination,Demyelinating Disease,Demyelinating Disorder,Demyelinations
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked

Related Publications

B Keogh, and G J Atkins, and K H G Mills, and B J Sheahan
November 1978, Journal of the neurological sciences,
B Keogh, and G J Atkins, and K H G Mills, and B J Sheahan
January 1975, Veterinary pathology,
B Keogh, and G J Atkins, and K H G Mills, and B J Sheahan
December 1971, British journal of experimental pathology,
B Keogh, and G J Atkins, and K H G Mills, and B J Sheahan
January 1983, Archives of virology,
B Keogh, and G J Atkins, and K H G Mills, and B J Sheahan
March 1988, Immunology,
B Keogh, and G J Atkins, and K H G Mills, and B J Sheahan
December 1978, The Journal of general virology,
B Keogh, and G J Atkins, and K H G Mills, and B J Sheahan
July 1997, The Journal of general virology,
B Keogh, and G J Atkins, and K H G Mills, and B J Sheahan
October 1977, British journal of experimental pathology,
B Keogh, and G J Atkins, and K H G Mills, and B J Sheahan
April 1980, British journal of experimental pathology,
Copied contents to your clipboard!