The low-affinity glucocorticoid receptor regulates feeding and lipid breakdown in the migratory Gambel's white-crowned sparrow Zonotrichia leucophrys gambelii. 2004

Meta M Landys, and Marilyn Ramenofsky, and Christopher G Guglielmo, and John C Wingfield
Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA. meta.landys@bio.uio.no

Plasma corticosterone increases during spring migration in a variety of bird species, including the Gambel's white-crowned sparrow Zonotrichia leucophrys gambelii. Corticosterone is elevated specifically in association with migratory flight, suggesting that corticosterone may promote processes such as energy mobilization and/or migratory activity. General effects of glucocorticoids support such a prediction. Because glucocorticoids exert permissive effects on food intake, corticosterone may also participate in the regulation of migratory hyperphagia. To examine the role of corticosterone during migration, we induced Gambel's white-crowned sparrows to enter the migratory condition and compared food intake and locomotor activity between controls and birds injected with RU486--an antagonist to the low-affinity glucocorticoid receptor (GR). In addition, we investigated effects of RU486 in birds that were subjected to a short-term fast. Results indicate that RU486 did not affect locomotor activity. However, consistent with its effects in mammals, RU486 suppressed food intake. Thus, hyperphagia and migratory restlessness, the two behaviors that characterize migration, may be regulated by different mechanisms. Lastly, RU486 antagonized fasting-induced lipid mobilization, as evidenced by decreased plasma free fatty acids. Thus, data on spring migrants suggest that endogenous corticosterone levels act through the GR to support hyperphagia and that the GR promotes availability of lipid fuel substrates in association with periods of energetic demand, e.g. during migratory flight.

UI MeSH Term Description Entries
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D003345 Corticosterone An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)
D004435 Eating The consumption of edible substances. Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes
D005247 Feeding Behavior Behavioral responses or sequences associated with eating including modes of feeding, rhythmic patterns of eating, and time intervals. Dietary Habits,Eating Behavior,Faith-based Dietary Restrictions,Feeding Patterns,Feeding-Related Behavior,Food Habits,Diet Habits,Eating Habits,Behavior, Eating,Behavior, Feeding,Behavior, Feeding-Related,Behaviors, Eating,Behaviors, Feeding,Behaviors, Feeding-Related,Diet Habit,Dietary Habit,Dietary Restriction, Faith-based,Dietary Restrictions, Faith-based,Eating Behaviors,Eating Habit,Faith based Dietary Restrictions,Faith-based Dietary Restriction,Feeding Behaviors,Feeding Pattern,Feeding Related Behavior,Feeding-Related Behaviors,Food Habit,Habit, Diet,Habit, Dietary,Habit, Eating,Habit, Food,Habits, Diet,Pattern, Feeding,Patterns, Feeding,Restrictions, Faith-based Dietary
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012621 Seasons Divisions of the year according to some regularly recurrent phenomena usually astronomical or climatic. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Seasonal Variation,Season,Seasonal Variations,Variation, Seasonal,Variations, Seasonal
D014861 Washington State bounded by on the north by Canada, on the east by Idaho, on the south by Oregon, and on the west by the Pacific Ocean.
D015735 Mifepristone A progestational and glucocorticoid hormone antagonist. Its inhibition of progesterone induces bleeding during the luteal phase and in early pregnancy by releasing endogenous prostaglandins from the endometrium or decidua. As a glucocorticoid receptor antagonist, the drug has been used to treat hypercortisolism in patients with nonpituitary CUSHING SYNDROME. Mifegyne,Mifeprex,Mifégyne,R-38486,R38486,RU-38486,RU-486,ZK-98296,ZK98296,R 38486,RU 38486,RU 486,RU38486,RU486,ZK 98296

Related Publications

Meta M Landys, and Marilyn Ramenofsky, and Christopher G Guglielmo, and John C Wingfield
February 2008, Journal of biological rhythms,
Meta M Landys, and Marilyn Ramenofsky, and Christopher G Guglielmo, and John C Wingfield
July 2004, PLoS biology,
Meta M Landys, and Marilyn Ramenofsky, and Christopher G Guglielmo, and John C Wingfield
October 1965, Animal behaviour,
Meta M Landys, and Marilyn Ramenofsky, and Christopher G Guglielmo, and John C Wingfield
February 1998, Hormones and behavior,
Meta M Landys, and Marilyn Ramenofsky, and Christopher G Guglielmo, and John C Wingfield
June 1967, British journal of pharmacology and chemotherapy,
Meta M Landys, and Marilyn Ramenofsky, and Christopher G Guglielmo, and John C Wingfield
July 2010, BMC neuroscience,
Meta M Landys, and Marilyn Ramenofsky, and Christopher G Guglielmo, and John C Wingfield
May 2008, BMC neuroscience,
Meta M Landys, and Marilyn Ramenofsky, and Christopher G Guglielmo, and John C Wingfield
September 2002, Hormones and behavior,
Meta M Landys, and Marilyn Ramenofsky, and Christopher G Guglielmo, and John C Wingfield
January 2015, Journal of neuroendocrinology,
Meta M Landys, and Marilyn Ramenofsky, and Christopher G Guglielmo, and John C Wingfield
September 2008, General and comparative endocrinology,
Copied contents to your clipboard!