Role of prokaryotic Cu,Zn superoxide dismutase in pathogenesis. 2003

A Battistoni
Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy. andrea.battistoni@uniroma2.it

Several bacterial pathogens possess sodC genes that encode periplasmic or membrane-associated Cu,Zn superoxide dismutases. Since professional phagocytes generate large amounts of reactive oxygen species to control the growth of invading micro-organisms, Cu,Zn superoxide dismutase might protect infectious bacteria from oxy-radical damage and facilitate their survival within the host. This idea has gained support from studies showing that sodC -null mutants of different bacteria are less virulent than their parental wild-type strains, and from the discovery that, despite apparent dispensability for growth under laboratory conditions, various pathogens (including several highly virulent Salmonella strains) possess multiple copies of sodC. Our studies indicate that Cu,Zn superoxide dismutase effectively protects bacteria from phagocytic killing, and that the role in infection of the redundant sodC genes may vary in distinct Salmonella enterica serovars. More unexpectedly, we have found that Cu,Zn superoxide dismutase also modulates bacterial survival within epithelial cells, where bacterial killing appears to be mediated by an NAD(P)H oxidase resembling the enzyme complex typical of phagocytes. Finally, a striking feature of Cu,Zn superoxide dismutases from bacterial pathogens is their apparent ability to exploit the structural versatility of the enzyme to modulate its function. In fact, several enzyme variants exhibit unique properties that may lead to the acquisition of novel specialized functions distinct from superoxide dismutation.

UI MeSH Term Description Entries
D010586 Phagocytes Cells that can carry out the process of PHAGOCYTOSIS. Phagocyte,Phagocytic Cell,Phagocytic Cells,Cell, Phagocytic,Cells, Phagocytic
D011387 Prokaryotic Cells Cells lacking a nuclear membrane so that the nuclear material is either scattered in the cytoplasm or collected in a nucleoid region. Cell, Prokaryotic,Cells, Prokaryotic,Prokaryotic Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese

Related Publications

A Battistoni
September 2021, Metallomics : integrated biometal science,
A Battistoni
December 2003, Biochemical Society transactions,
A Battistoni
January 2002, International journal of cancer,
A Battistoni
March 2003, Journal of immunology (Baltimore, Md. : 1950),
A Battistoni
December 2013, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica,
A Battistoni
December 2003, The Journal of clinical investigation,
A Battistoni
August 1996, Proceedings of the National Academy of Sciences of the United States of America,
A Battistoni
July 1987, Nucleic acids research,
A Battistoni
January 1991, Comparative biochemistry and physiology. B, Comparative biochemistry,
Copied contents to your clipboard!