Sensitivity of neurons in cat primary auditory cortex to tones and frequency-modulated stimuli. I: Effects of variation of stimulus parameters. 1992

P Heil, and R Rajan, and D R Irvine
Department of Psychology, Monash University, Clayton Victoria, Australia.

In the primary auditory cortex (AI) of barbiturate-anesthetized cats multi-unit responses to tones and to frequency-modulated (FM) tonal stimuli were analyzed. Characteristic frequency (CF), sharpness of tuning, minimum threshold, and dynamic range of spike count--intensity functions were determined. Minimum threshold and dynamic range were positively correlated. The response functions to unidirectional FM sweeps of varying linear rate of change of frequency (RCF) that traversed the excitatory frequency response areas (FRAs) displayed a variety of shapes. Preferences for fast RCFs (> 1000 kHz/s) were most common. Best RCF was not correlated with measures of sharpness of tuning. Directional preference and sensitivity were quantified by a DS index which varied with RCF. About two-thirds of the multi-unit responses showed a preference for downward sweeps. Directional sensitivity was independent of CF and independent of best RCF. Measurements of latencies of phasic responses to unidirectional FM sweeps of different RCF demonstrated that the discharges of a given multi-unit over its effective RCF range were initiated at the same instantaneous frequency (effective Fi), independent of RCF. Effective Fis fell within the excitatory FRA of a given multi-unit. The relationships of effective Fis to CF show that responses were evoked only when the frequency of the signal was modulated towards CF and not when modulated away from it, and that responses were initiated before the modulation reached CF. Changes in the range and depth of modulation had only minor, if any, effects on RCF response characteristics, FM directional sensitivity, and effective Fis, as long as the beginning and ending frequencies of FM sweeps fell outside a multi-unit's FRA. Stimulus intensity also had only moderate effects on RCF response characteristics and DS. However, effective Fis were influenced in systematic fashions; with increases in intensity, effective Fis to upward and downward sweeps decreased and increased, respectively. Thus, for higher intensities FM responses were initiated at instantaneous frequencies occurring earlier in the signal. The results are compared with previous data on tone and FM sensitivity of auditory neurons in cortical and subcortical structures, and mechanisms of FM rate and directional sensitivity are discussed. The topographic representations of these neuronal properties in AI are reported in the companion report.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002138 Calibration Determination, by measurement or comparison with a standard, of the correct value of each scale reading on a meter or other measuring instrument; or determination of the settings of a control device that correspond to particular values of voltage, current, frequency or other output. Calibrations
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003627 Data Interpretation, Statistical Application of statistical procedures to analyze specific observed or assumed facts from a particular study. Data Analysis, Statistical,Data Interpretations, Statistical,Interpretation, Statistical Data,Statistical Data Analysis,Statistical Data Interpretation,Analyses, Statistical Data,Analysis, Statistical Data,Data Analyses, Statistical,Interpretations, Statistical Data,Statistical Data Analyses,Statistical Data Interpretations
D005260 Female Females
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001299 Audiometry The testing of the acuity of the sense of hearing to determine the thresholds of the lowest intensity levels at which an individual can hear a set of tones. The frequencies between 125 and 8000 Hz are used to test air conduction thresholds and the frequencies between 250 and 4000 Hz are used to test bone conduction thresholds. Audiometries
D001303 Auditory Cortex The region of the cerebral cortex that receives the auditory radiation from the MEDIAL GENICULATE BODY. Brodmann Area 41,Brodmann Area 42,Brodmann's Area 41,Heschl Gyrus,Heschl's Gyrus,Auditory Area,Heschl's Convolutions,Heschl's Gyri,Primary Auditory Cortex,Temporal Auditory Area,Transverse Temporal Gyri,Area 41, Brodmann,Area 41, Brodmann's,Area 42, Brodmann,Area, Auditory,Area, Temporal Auditory,Auditory Areas,Auditory Cortex, Primary,Brodmanns Area 41,Cortex, Auditory,Cortex, Primary Auditory,Gyrus, Heschl,Gyrus, Heschl's,Gyrus, Transverse Temporal,Heschl Convolutions,Heschl Gyri,Heschls Convolutions,Heschls Gyri,Heschls Gyrus,Primary Auditory Cortices,Temporal Auditory Areas,Temporal Gyrus, Transverse,Transverse Temporal Gyrus

Related Publications

P Heil, and R Rajan, and D R Irvine
April 2009, Journal of neurophysiology,
P Heil, and R Rajan, and D R Irvine
September 2007, Infancy : the official journal of the International Society on Infant Studies,
P Heil, and R Rajan, and D R Irvine
December 2000, Cerebral cortex (New York, N.Y. : 1991),
P Heil, and R Rajan, and D R Irvine
September 2008, Journal of neurophysiology,
P Heil, and R Rajan, and D R Irvine
January 1994, Experimental brain research,
P Heil, and R Rajan, and D R Irvine
January 1993, Experimental brain research,
Copied contents to your clipboard!