Killing of Legionella pneumophila by nitric oxide in gamma-interferon-activated macrophages. 1992

J T Summersgill, and L A Powell, and B L Buster, and R D Miller, and J A Ramirez
Department of Medicine, University of Louisville School of Medicine, Kentucky 40292.

The role of nitric oxide (NO) radicals in killing the intracellular bacterial pathogen Legionella pneumophila (Lp) was examined in infected macrophages. Murine (RAW 264.7) and human (HL-60) cell monolayers were treated with 100 U/ml gamma-interferon (IFN) and cocultured with Lp in the presence and absence of NGMMA, a specific inhibitor of NO production. Viable Lp in IFN-treated RAW 264.7 cells decreased from 3.8 to 0.7 +/- 0.12 log CFU/ml after 24 h incubation, whereas in IFN+NGMMA-treated RAW 264.7 cells, viable Lp persisted at 2.2 +/- 0.2 log CFU/ml after 24 h. This increased survival corresponded with an inhibition of NO production (5.65 +/- 2.99 microM with NGMMA vs. 58.6 +/- 5.36 microM without NGMMA). Viable Lp were susceptible to killing, in a dose-dependent fashion, by 0, 2.5, and 5.0 mM sodium nitroprusside, a source of NO radicals. IFN-treated RAW 264.7 cells also had significantly decreased levels of intracellular iron (below assay limit) when compared to IFN+NGMMA-treated cells (72.0 +/- 0.78% of control). Normally permissive HL-60 cells treated with IFN were bacteriostatic rather than bactericidal, and NO production was not detected above background. Thus, NO radicals play a critical role in the bactericidal activity against Lp by IFN-treated RAW 264.7 cells, but the absence of NO production limits IFN-treated HL-60 cells to bacteriostasis.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008262 Macrophage Activation The process of altering the morphology and functional activity of macrophages so that they become avidly phagocytic. It is initiated by lymphokines, such as the macrophage activation factor (MAF) and the macrophage migration-inhibitory factor (MMIF), immune complexes, C3b, and various peptides, polysaccharides, and immunologic adjuvants. Activation, Macrophage,Activations, Macrophage,Macrophage Activations
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D009573 Nitrites Salts of nitrous acid or compounds containing the group NO2-. The inorganic nitrites of the type MNO2 (where M Nitrite
D009599 Nitroprusside A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins. Nitroferricyanide,Sodium Nitroprusside,Cyanonitrosylferrate,Ketostix,Naniprus,Nipride,Nipruton,Nitriate,Nitropress,Nitroprussiat Fides,Nitroprusside, Disodium Salt,Nitroprusside, Disodium Salt, Dihydrate,Disodium Salt Nitroprusside,Nitroprusside, Sodium
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell

Related Publications

J T Summersgill, and L A Powell, and B L Buster, and R D Miller, and J A Ramirez
May 2011, PloS one,
J T Summersgill, and L A Powell, and B L Buster, and R D Miller, and J A Ramirez
August 1996, Cellular immunology,
J T Summersgill, and L A Powell, and B L Buster, and R D Miller, and J A Ramirez
May 2005, Infection and immunity,
J T Summersgill, and L A Powell, and B L Buster, and R D Miller, and J A Ramirez
August 1994, Infection and immunity,
J T Summersgill, and L A Powell, and B L Buster, and R D Miller, and J A Ramirez
October 1986, Journal of immunology (Baltimore, Md. : 1950),
J T Summersgill, and L A Powell, and B L Buster, and R D Miller, and J A Ramirez
January 1991, Journal of leukocyte biology,
J T Summersgill, and L A Powell, and B L Buster, and R D Miller, and J A Ramirez
May 1995, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research,
J T Summersgill, and L A Powell, and B L Buster, and R D Miller, and J A Ramirez
October 2008, Oral microbiology and immunology,
J T Summersgill, and L A Powell, and B L Buster, and R D Miller, and J A Ramirez
March 1988, Immunobiology,
J T Summersgill, and L A Powell, and B L Buster, and R D Miller, and J A Ramirez
June 1988, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!