Microglia, a potential source of neurons, astrocytes, and oligodendrocytes. 2004

Akiko Yokoyama, and Lihua Yang, and Suzuka Itoh, and Kohji Mori, and Junya Tanaka
Department of Physiology, School of Medicine, Ehime University, Ehime, Japan.

Microglia are considered the only cell population of mesodermal origin in the brain, although their role is not fully understood. The present study demonstrated that rat primary microglial cells expressed nestin, A2B5, and O4 antigens, which are markers for oligodendrocyte precursor cells. Based on these findings, we investigated whether microglial cells generated neurons or macroglial cells. Purified microglial cells were cultured in the presence of 10% fetal bovine serum for 3 days, followed by culture in the presence of 70% serum for 2 days. During the two-step culture, microglial cells became highly proliferative and strongly expressed inhibitor of DNA binding (Id) genes, indicative of dedifferentiation of the cells. The dedifferentiated cells also expressed transcription factors that promote differentiation into neurons or macroglial cells. When the dedifferentiated cells were transferred into serum-free medium on poly-L-lysine-coated substrate, a substantial number of the cells rapidly turned into long process-bearing cells, which expressed microtubule-associated protein 2, synapsin I, neurofilament proteins, glial fibrillary acidic protein, or galactocerebroside. When microglial cells were fluorescently labeled through acetylated low-density lipoprotein (LDL) receptors or by a phagocytosis-dependent mechanism, fluorescence-bearing neurons, astrocytes, or oligodendrocytes were observed. Neurospheres, aggregates of neural stem cells, expressed Musashi 1 and epidermal growth factor receptor, but the microglia-derived cells did not. These results suggest a novel role of microglia as multipotential stem cells to give rise to neurons, astrocytes, or oligodendrocytes.

UI MeSH Term Description Entries
D007381 Intermediate Filament Proteins Filaments 7-11 nm in diameter found in the cytoplasm of all cells. Many specific proteins belong to this group, e.g., desmin, vimentin, prekeratin, decamin, skeletin, neurofilin, neurofilament protein, and glial fibrillary acid protein. Fibroblast Intermediate Filament Proteins,Filament Proteins, Intermediate,Proteins, Intermediate Filament
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D017628 Microglia The third type of glial cell, along with astrocytes and oligodendrocytes (which together form the macroglia). Microglia vary in appearance depending on developmental stage, functional state, and anatomical location; subtype terms include ramified, perivascular, ameboid, resting, and activated. Microglia clearly are capable of phagocytosis and play an important role in a wide spectrum of neuropathologies. They have also been suggested to act in several other roles including in secretion (e.g., of cytokines and neural growth factors), in immunological processing (e.g., antigen presentation), and in central nervous system development and remodeling. Microglial Cell,Cell, Microglial,Microglial Cells,Microglias

Related Publications

Akiko Yokoyama, and Lihua Yang, and Suzuka Itoh, and Kohji Mori, and Junya Tanaka
September 2019, BMC veterinary research,
Akiko Yokoyama, and Lihua Yang, and Suzuka Itoh, and Kohji Mori, and Junya Tanaka
January 2003, Developmental neuroscience,
Akiko Yokoyama, and Lihua Yang, and Suzuka Itoh, and Kohji Mori, and Junya Tanaka
September 1971, Journal of clinical pathology,
Akiko Yokoyama, and Lihua Yang, and Suzuka Itoh, and Kohji Mori, and Junya Tanaka
April 2001, Journal of neuropathology and experimental neurology,
Akiko Yokoyama, and Lihua Yang, and Suzuka Itoh, and Kohji Mori, and Junya Tanaka
April 2021, Developmental neurobiology,
Akiko Yokoyama, and Lihua Yang, and Suzuka Itoh, and Kohji Mori, and Junya Tanaka
December 2014, Cold Spring Harbor perspectives in biology,
Akiko Yokoyama, and Lihua Yang, and Suzuka Itoh, and Kohji Mori, and Junya Tanaka
December 2007, Neurochemical research,
Akiko Yokoyama, and Lihua Yang, and Suzuka Itoh, and Kohji Mori, and Junya Tanaka
July 2013, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
Akiko Yokoyama, and Lihua Yang, and Suzuka Itoh, and Kohji Mori, and Junya Tanaka
January 2012, Methods in molecular biology (Clifton, N.J.),
Akiko Yokoyama, and Lihua Yang, and Suzuka Itoh, and Kohji Mori, and Junya Tanaka
May 1997, Brain research. Molecular brain research,
Copied contents to your clipboard!