Regulation of the tyrosine hydroxylase gene promoter by histone deacetylase inhibitors. 2003

Hee-Sun Kim, and Jin-Sun Park, and Seok-Jong Hong, and Moon-Sook Woo, and So-Young Kim, and Kwang-Soo Kim
Department of Neuroscience, Ewha Institute of Neuroscience, College of Medicine, Ewha Womans University, Seoul, Republic of Korea. hskimp@mm.ewha.ac.kr

Tyrosine hydroxylase (TH) catalyzes the conversion of L-tyrosine to 3,4-dihydroxy-L-phenylalanine, which is the first and rate-limiting step in catecholamine biosynthesis. In the present study, we report that treatment with the histone deacetylase (HDAC) inhibitors, trichostatin A (TSA) or sodium butyrate, prominently induces the TH promoter activity in both non-neuronal and neuronal cell lines. By analyzing a series of deletional reporter constructs, we also determined that the proximal 151bp region of the TH promoter is largely responsible for TSA-mediated activation. Finally, we found that mutation of the Sp1 or CRE site, residing in the proximal area, abolishes TSA-mediated activation, strongly suggesting that the Sp1 and CRE sites may mediate TH promoter activation by inhibition of HDAC. In summary, our results provide a novel regulatory frame in which modulation of chromatin structure by histone deacetylase may contribute to transcriptional regulation of the TH via the Sp1 and/or CRE site.

UI MeSH Term Description Entries
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002087 Butyrates Derivatives of BUTYRIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxypropane structure. Butyrate,n-Butyrate,Butanoic Acids,Butyric Acids,Acids, Butanoic,Acids, Butyric,n Butyrate
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006528 Carcinoma, Hepatocellular A primary malignant neoplasm of epithelial liver cells. It ranges from a well-differentiated tumor with EPITHELIAL CELLS indistinguishable from normal HEPATOCYTES to a poorly differentiated neoplasm. The cells may be uniform or markedly pleomorphic, or form GIANT CELLS. Several classification schemes have been suggested. Hepatocellular Carcinoma,Hepatoma,Liver Cancer, Adult,Liver Cell Carcinoma,Liver Cell Carcinoma, Adult,Adult Liver Cancer,Adult Liver Cancers,Cancer, Adult Liver,Cancers, Adult Liver,Carcinoma, Liver Cell,Carcinomas, Hepatocellular,Carcinomas, Liver Cell,Cell Carcinoma, Liver,Cell Carcinomas, Liver,Hepatocellular Carcinomas,Hepatomas,Liver Cancers, Adult,Liver Cell Carcinomas
D006655 Histone Deacetylases Deacetylases that remove N-acetyl groups from amino side chains of the amino acids of HISTONES. The enzyme family can be divided into at least three structurally-defined subclasses. Class I and class II deacetylases utilize a zinc-dependent mechanism. The sirtuin histone deacetylases belong to class III and are NAD-dependent enzymes. Class I Histone Deacetylases,Class II Histone Deacetylases,HDAC Proteins,Histone Deacetylase,Histone Deacetylase Complexes,Complexes, Histone Deacetylase,Deacetylase Complexes, Histone,Deacetylase, Histone,Deacetylases, Histone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006877 Hydroxamic Acids A class of weak acids with the general formula R-CONHOH. Hydroxamic Acid,Acid, Hydroxamic,Acids, Hydroxamic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Hee-Sun Kim, and Jin-Sun Park, and Seok-Jong Hong, and Moon-Sook Woo, and So-Young Kim, and Kwang-Soo Kim
June 2006, Gene,
Hee-Sun Kim, and Jin-Sun Park, and Seok-Jong Hong, and Moon-Sook Woo, and So-Young Kim, and Kwang-Soo Kim
January 2009, Biochemical and biophysical research communications,
Hee-Sun Kim, and Jin-Sun Park, and Seok-Jong Hong, and Moon-Sook Woo, and So-Young Kim, and Kwang-Soo Kim
February 2000, Archives of biochemistry and biophysics,
Hee-Sun Kim, and Jin-Sun Park, and Seok-Jong Hong, and Moon-Sook Woo, and So-Young Kim, and Kwang-Soo Kim
March 2003, Journal of virology,
Hee-Sun Kim, and Jin-Sun Park, and Seok-Jong Hong, and Moon-Sook Woo, and So-Young Kim, and Kwang-Soo Kim
April 2009, Archives of pharmacal research,
Hee-Sun Kim, and Jin-Sun Park, and Seok-Jong Hong, and Moon-Sook Woo, and So-Young Kim, and Kwang-Soo Kim
January 2012, ISRN hematology,
Hee-Sun Kim, and Jin-Sun Park, and Seok-Jong Hong, and Moon-Sook Woo, and So-Young Kim, and Kwang-Soo Kim
April 2003, Brain research. Molecular brain research,
Hee-Sun Kim, and Jin-Sun Park, and Seok-Jong Hong, and Moon-Sook Woo, and So-Young Kim, and Kwang-Soo Kim
June 2015, Drug discoveries & therapeutics,
Hee-Sun Kim, and Jin-Sun Park, and Seok-Jong Hong, and Moon-Sook Woo, and So-Young Kim, and Kwang-Soo Kim
December 2005, The Journal of biological chemistry,
Hee-Sun Kim, and Jin-Sun Park, and Seok-Jong Hong, and Moon-Sook Woo, and So-Young Kim, and Kwang-Soo Kim
October 2019, Neuroscience and biobehavioral reviews,
Copied contents to your clipboard!