How the mesencephalic locomotor region recruits hindbrain neurons. 2004

Igor Kagan, and Mark L Shik
Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel.

This chapter summarizes experiments which were designed to reveal how repetitive electrical stimulation of the mesencephalic locomotor region (MLR) recruits nearby hindbrain neurons into activity, such that locomotion can ensue in the tiger salamander, A. tigrinum. The MLR stimulus strength was subthreshold or near-threshold for locomotor movements to ensue. Such relatively weak stimulation of the MLR produced locomotor movements after a relatively long delay, which featured neuronal interactions in the hindbrain. MLR-evoked spike responses of single hindbrain neurons were recorded before locomotor movements began. This allowed consideration of the build-up of the hindbrain neuronal activity, which was subsequently impressed upon the spinal cord such as to evoke locomotor movements. Each train of MLR stimulus pulses evoked monosynaptic responses in but a small proportion of the hindbrain's neurons. Rather, oligosynaptic responses were routinely evoked, even in the "input" neurons that were activated monosynaptically. Consecutive stimulus volleys recruited a given neuron after a variable number of synaptic translations. It is argued that the hindbrain's input neurons excited a much larger number of other hindbrain neurons. By this means, an MLR-evoked, short-lived propagating wave of excitation (i.e., approximately 2-4 successive synaptic activations) can be spread throughout the hindbrain.

UI MeSH Term Description Entries
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010507 Periodicity The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian). Cyclicity,Rhythmicity,Biological Rhythms,Bioperiodicity,Biorhythms,Biological Rhythm,Bioperiodicities,Biorhythm,Cyclicities,Periodicities,Rhythm, Biological,Rhythmicities,Rhythms, Biological
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D011999 Recruitment, Neurophysiological The spread of response if stimulation is prolonged. (Campbell's Psychiatric Dictionary, 8th ed.) Recruitment, Motor Unit,Motor Unit Recruitment,Neurophysiological Recruitment
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000557 Ambystoma A genus of the Ambystomatidae family. The best known species are the axolotl AMBYSTOMA MEXICANUM and the closely related tiger salamander Ambystoma tigrinum. They may retain gills and remain aquatic without developing all of the adult characteristics. However, under proper changes in the environment they metamorphose. Amblystoma,Ambystoma tigrinum,Tiger Salamander,Amblystomas,Ambystomas,Salamander, Tiger,Salamanders, Tiger,Tiger Salamanders
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Igor Kagan, and Mark L Shik
May 1987, Brain research,
Igor Kagan, and Mark L Shik
January 2022, Frontiers in neural circuits,
Igor Kagan, and Mark L Shik
January 2013, Current pharmaceutical design,
Igor Kagan, and Mark L Shik
January 1986, Neirofiziologiia = Neurophysiology,
Igor Kagan, and Mark L Shik
January 2019, Frontiers in systems neuroscience,
Igor Kagan, and Mark L Shik
March 1985, Brain research,
Igor Kagan, and Mark L Shik
January 1987, Neirofiziologiia = Neurophysiology,
Igor Kagan, and Mark L Shik
December 1984, Brain research,
Copied contents to your clipboard!