Myocardial vasoactive intestinal peptide and fibrosis induced by nitric oxide synthase inhibition in the rat. 2003

V Z C Ye, and G Hodge, and J L C Yong, and K A Duggan
Hypertension Service and Department of Anatomical Pathology, South Western Sydney Area Health Service, Sydney, Australia.

OBJECTIVE In both normotensive and hypertensive rats, the degree of myocardial fibrosis is inversely correlated with the concentration of vasoactive intestinal peptide (VIP) in the myocardium. Treatment with nitric oxide (NO) synthase inhibitors also causes myocardial fibrosis. In this study, we sought to determine whether the myocardial fibrosis induced by treatment with the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) was also associated with depletion of VIP in the myocardium. METHODS Male Wistar Kyoto (WKY) and spontaneous hypertensive rats (SHR) rats treated with l-NAME were randomized to low, intermediate or high salt content diets. After 4 weeks, the hearts were harvested, the degree of fibrosis quantified and VIP concentration measured. RESULTS In WKY, systolic blood pressure increased with increasing dietary sodium (P < 0.05). Myocardial fibrosis also increased with increasing dietary sodium (P < 0.005). Myocardial VIP concentration decreased with increasing dietary sodium (P < 0.025). In contrast, in the SHR treated with l-NAME, systolic blood pressure increased but the increase was not affected by sodium intake. Further, myocardial fibrosis and myocardial VIP were unchanged by increased dietary sodium. Higher doses of l-NAME in the SHR did not increase the systolic blood pressure, increase the degree of myocardial fibrosis or decrease the myocardial concentration of VIP. These differences in myocardial VIP concentration may reflect differing effects of l-NAME on VIP metabolism, as l-NAME increased VIP metabolism in the WKY (P < 0.05) but did not change VIP metabolism in the SHR. CONCLUSIONS We conclude that depletion of VIP in the myocardium is associated with increasing myocardial fibrosis in l-NAME treated WKY. As VIP depletion occurs in other models of myocardial fibrosis, it appears to be a common mechanism. Myocardial VIP depletion may therefore be a new and important factor in the pathogenesis of cardiac fibrosis.

UI MeSH Term Description Entries
D008297 Male Males
D008657 Metabolic Clearance Rate Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site. Total Body Clearance Rate,Clearance Rate, Metabolic,Clearance Rates, Metabolic,Metabolic Clearance Rates,Rate, Metabolic Clearance,Rates, Metabolic Clearance
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D011918 Rats, Inbred SHR A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke. Rats, Spontaneously Hypertensive,Rats, SHR,Inbred SHR Rat,Inbred SHR Rats,Rat, Inbred SHR,Rat, SHR,Rat, Spontaneously Hypertensive,SHR Rat,SHR Rat, Inbred,SHR Rats,SHR Rats, Inbred,Spontaneously Hypertensive Rat,Spontaneously Hypertensive Rats
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005355 Fibrosis Any pathological condition where fibrous connective tissue invades any organ, usually as a consequence of inflammation or other injury. Cirrhosis,Fibroses

Related Publications

V Z C Ye, and G Hodge, and J L C Yong, and K A Duggan
September 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
V Z C Ye, and G Hodge, and J L C Yong, and K A Duggan
November 2019, European journal of pharmacology,
V Z C Ye, and G Hodge, and J L C Yong, and K A Duggan
February 1996, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie,
V Z C Ye, and G Hodge, and J L C Yong, and K A Duggan
June 1993, Neuroscience,
V Z C Ye, and G Hodge, and J L C Yong, and K A Duggan
November 2013, Cardiovascular research,
V Z C Ye, and G Hodge, and J L C Yong, and K A Duggan
December 1996, Annals of the New York Academy of Sciences,
V Z C Ye, and G Hodge, and J L C Yong, and K A Duggan
November 1995, The Journal of clinical investigation,
V Z C Ye, and G Hodge, and J L C Yong, and K A Duggan
January 1997, Respiration; international review of thoracic diseases,
Copied contents to your clipboard!