Biochemical and molecular characterization of ACH2, an acyl-CoA thioesterase from Arabidopsis thaliana. 2004

Gregory B Tilton, and Jay M Shockey, and John Browse
Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA.

By using computer-based homology searches of the Arabidopsis genome, we identified the gene for ACH2, a putative acyl-CoA thioesterase. With the exception of a unique 129-amino acid N-terminal extension, the ACH2 protein is 17-36% identical to members of a family of acyl-CoA thioesterases that are found in both prokaryotes and eukaryotes. The eukaryotic homologs of ACH2 are peroxisomal acyl-CoA thioesterases that are up-regulated during times of increased fatty acid oxidation, suggesting potential roles in peroxisomal beta-oxidation. We investigated ACH2 to determine whether it has a similar role in the plant cell. Like its eukaryotic homologs, ACH2 carries a putative type 1 peroxisomal targeting sequence (-SKL(COOH)), and maintains all the catalytic residues typical of this family of acyl-CoA thioesterases. Analytical ultracentrifugation of recombinant ACH2-6His shows that it associates as a 196-kDa homotetramer in vitro, a result that is significant in light of the cooperative kinetics demonstrated by ACH2-6His in vitro. The cooperative effects are most pronounced with medium chain acyl-CoAs, where the Hill coefficient is 3.8 for lauroyl-CoA, but decrease for long chain acyl-CoAs, where the Hill coefficient is only 1.9 for oleoyl-CoA. ACH2-6His hydrolyzes both medium and long chain fatty acyl-CoAs but has highest activity toward the long chain unsaturated fatty acyl-CoAs. Maximum rates were found with palmitoleoyl-CoA, which is hydrolyzed at 21 micromol/min/mg protein. Additionally, ACH2-6His is insensitive to feedback inhibition by free CoASH levels as high as 100 microm. ACH2 is most highly expressed in mature tissues such as young leaves and flowers rather than in germinating seedlings where beta-oxidation is rapidly proceeding. Taken together, these results suggest that ACH2 activity is not linked to fatty acid oxidation as has been suggested for its eukaryotic homologs, but rather has a unique role in the plant cell.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010170 Palmitoyl-CoA Hydrolase Enzyme catalyzing reversibly the hydrolysis of palmitoyl-CoA or other long-chain acyl coenzyme A compounds to yield CoA and palmitate or other acyl esters. The enzyme is involved in the esterification of fatty acids to form triglycerides. EC 3.1.2.2. Acyl CoA Hydrolase,Fatty Acyl Thioesterase,Palmitoyl CoA Deacylase,Palmitoyl Coenzyme A Hydrolase,Palmitoyl Thioesterase,Long-Chain Fatty-Acyl-CoA Hydrolase,Oleoyl-CoA Acylhydrolase,Stearoyl CoA Hydrolase,Thioesterase I,Acylhydrolase, Oleoyl-CoA,CoA Deacylase, Palmitoyl,CoA Hydrolase, Acyl,CoA Hydrolase, Stearoyl,Deacylase, Palmitoyl CoA,Fatty-Acyl-CoA Hydrolase, Long-Chain,Hydrolase, Acyl CoA,Hydrolase, Long-Chain Fatty-Acyl-CoA,Hydrolase, Palmitoyl-CoA,Hydrolase, Stearoyl CoA,Long Chain Fatty Acyl CoA Hydrolase,Oleoyl CoA Acylhydrolase,Palmitoyl CoA Hydrolase,Thioesterase, Fatty Acyl,Thioesterase, Palmitoyl
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

Gregory B Tilton, and Jay M Shockey, and John Browse
December 2000, Biochemical Society transactions,
Gregory B Tilton, and Jay M Shockey, and John Browse
July 1996, Archives of biochemistry and biophysics,
Gregory B Tilton, and Jay M Shockey, and John Browse
February 1985, Archives of biochemistry and biophysics,
Gregory B Tilton, and Jay M Shockey, and John Browse
July 1999, The Journal of biological chemistry,
Gregory B Tilton, and Jay M Shockey, and John Browse
February 1998, The Biochemical journal,
Gregory B Tilton, and Jay M Shockey, and John Browse
April 2006, Phytochemistry,
Gregory B Tilton, and Jay M Shockey, and John Browse
May 2003, The Journal of biological chemistry,
Gregory B Tilton, and Jay M Shockey, and John Browse
January 2006, Plant physiology and biochemistry : PPB,
Gregory B Tilton, and Jay M Shockey, and John Browse
July 2014, Chemistry (Weinheim an der Bergstrasse, Germany),
Copied contents to your clipboard!