Identification of functionally important regions of a haemoglobin receptor from Neisseria meningitidis. 2003

D Perkins-Balding, and M T Baer, and I Stojiljkovic
Department of Microbiology and Immunology, Emory School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA.

The HmbR outer-membrane receptor enables Neisseria meningitidis to use haemoglobin (Hb) as a source of iron. This protein functions by binding Hb, removing haem from it, and releasing the haem into the periplasm. Functionally important HmbR receptor domains were discerned using a series of HmbR deletions and site-directed mutations. Mutations exhibiting similar defective phenotypes in N. meningitidis fell into two groups. The first group of mutations affected Hb binding and were located in putative extracellular loops (L) L2 (amino acid residues (aa) 192-230) and L3 (aa 254-284). The second group of mutations resulted in a failure to utilize Hb but proficiency in Hb binding was retained. These mutations localized to the putative extracellular loops L6 (aa 420-462) and L7 (aa 486-516). A highly conserved protein motif found in all haem/Hb receptors, within putative extracellular loop L7 of HmbR, is essential for Hb utilization but not required for Hb binding. This finding suggests a mechanistic involvement of this motif in haem removal from Hb. In addition, an amino-terminal deletion in the putative cork-like domain of HmbR affected Hb usage but not Hb binding. This result supports a role of the cork domain in utilization steps that are subsequent to Hb binding.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009345 Neisseria meningitidis A species of gram-negative, aerobic BACTERIA. It is a commensal and pathogen only of humans, and can be carried asymptomatically in the NASOPHARYNX. When found in cerebrospinal fluid it is the causative agent of cerebrospinal meningitis (MENINGITIS, MENINGOCOCCAL). It is also found in venereal discharges and blood. There are at least 13 serogroups based on antigenic differences in the capsular polysaccharides; the ones causing most meningitis infections being A, B, C, Y, and W-135. Each serogroup can be further classified by serotype, serosubtype, and immunotype. Diplokokkus intracellularis meningitidis,Meningococcus,Micrococcus intracellularis,Micrococcus meningitidis,Micrococcus meningitidis cerebrospinalis,Neisseria weichselbaumii
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

D Perkins-Balding, and M T Baer, and I Stojiljkovic
December 1992, Journal of general microbiology,
D Perkins-Balding, and M T Baer, and I Stojiljkovic
March 1988, Molecular microbiology,
D Perkins-Balding, and M T Baer, and I Stojiljkovic
May 2010, Microbiology (Reading, England),
D Perkins-Balding, and M T Baer, and I Stojiljkovic
April 2004, Emerging infectious diseases,
D Perkins-Balding, and M T Baer, and I Stojiljkovic
February 1995, Molecular microbiology,
D Perkins-Balding, and M T Baer, and I Stojiljkovic
February 1994, Molecular microbiology,
D Perkins-Balding, and M T Baer, and I Stojiljkovic
September 1991, Infection and immunity,
D Perkins-Balding, and M T Baer, and I Stojiljkovic
March 1994, Journal of bacteriology,
Copied contents to your clipboard!