Effect of various vaccination procedures on shedding, latency, and reactivation of attenuated and virulent pseudorabies virus in swine. 1992

W L Mengeling, and K M Lager, and D M Volz, and S L Brockmeier
USDA, Agricultural Research Service, National Animal Disease Center, Ames, IA 50010.

Various procedures of vaccination for pseudorabies were compared for their effects on shedding, latency, and reactivation of attenuated and virulent pseudorabies virus. The study included 6 groups: group 1 (10 swine neither vaccinated nor challenge-exposed), group 2 (20 swine not vaccinated, but challenge-exposed), and groups 3 through 6 (10 swine/group, all vaccinated and challenge-exposed). Swine were vaccinated with killed virus IM (group 3) or intranasally (group 4), or with live virus IM (group 5) or intranasally (group 6). The chronologic order of treatments was as follows: vaccination (week 0), challenge of immunity by oronasal exposure to virulent virus (week 4), biopsy of tonsillar tissue (week 12), treatment with dexamethasone in an attempt to reactivate latent virus (week 15), and necropsy (week 21). Vaccination IM with killed or live virus and vaccination intranasally with live virus mitigated clinical signs and markedly reduced the magnitude and duration of virus shedding after challenge exposure. Abatement of signs and shedding was most pronounced for swine that had been vaccinated intranasally with live virus. All swine, except 4 from group 2 and 1 from group 4, survived challenge exposure. Only vaccination intranasally with live virus was effective in reducing the magnitude and duration of virus shedding after virus reactivation. Vaccination intranasally with killed virus was without measurable effect on immunity. Of the 55 swine that survived challenge exposure, 54 were shown subsequently to have latent infections by use of dexamethasone-induced virus reactivation, and 53 were shown to have latent infections by use of polymerase chain reaction (PCR) with trigeminal ganglia specimens collected at necropsy. Fewer swine were identified by PCR as having latent infections when other tissues were examined; 20 were identified by testing specimens of olfactory bulbs, 4 by testing tonsil specimens collected at necropsy, and 4 by testing tonsillar biopsy specimens. Eighteen of the 20 specimens of olfactory bulbs and 3 of the 4 tonsil specimens collected at necropsy in which virus was detected by PCR were from swine without detectable virus-neutralizing antibody at the time of challenge exposure. One pig that had been vaccinated intranasally with live virus shed vaccine virus from the nose and virulent virus from the pharynx concurrently after dexamethasone treatment. Evaluation of both viral populations for unique strain characteristics failed to provide evidence of virus recombination.

UI MeSH Term Description Entries
D011557 Pseudorabies A highly contagious herpesvirus infection affecting the central nervous system of swine, cattle, dogs, cats, rats, and other animals. Aujeszky's Disease,Aujeszky Disease,Aujeszkys Disease
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D013553 Swine Diseases Diseases of domestic swine and of the wild boar of the genus Sus. Disease, Swine,Diseases, Swine,Swine Disease
D014066 Palatine Tonsil A round-to-oval mass of lymphoid tissue embedded in the lateral wall of the PHARYNX. There is one on each side of the oropharynx in the fauces between the anterior and posterior pillars of the SOFT PALATE. Tonsil,Tonsil, Palatine,Palatine Tonsils,Tonsils,Tonsils, Palatine
D014611 Vaccination Administration of vaccines to stimulate the host's immune response. This includes any preparation intended for active immunological prophylaxis. Immunization, Active,Active Immunization,Active Immunizations,Immunizations, Active,Vaccinations
D014613 Vaccines, Attenuated Live vaccines prepared from microorganisms which have undergone physical adaptation (e.g., by radiation or temperature conditioning) or serial passage in laboratory animal hosts or infected tissue/cell cultures, in order to produce avirulent mutant strains capable of inducing protective immunity. Attenuated Vaccine,Vaccines, Live, Attenuated,Attenuated Vaccines,Vaccine, Attenuated
D014765 Viral Vaccines Suspensions of attenuated or killed viruses administered for the prevention or treatment of infectious viral disease. Viral Vaccine,Vaccine, Viral,Vaccines, Viral
D014775 Virus Activation The mechanism by which latent viruses, such as genetically transmitted tumor viruses (PROVIRUSES) or PROPHAGES of lysogenic bacteria, are induced to replicate and then released as infectious viruses. It may be effected by various endogenous and exogenous stimuli, including B-cell LIPOPOLYSACCHARIDES, glucocorticoid hormones, halogenated pyrimidines, IONIZING RADIATION, ultraviolet light, and superinfecting viruses. Prophage Excision,Prophage Induction,Virus Induction,Viral Activation,Activation, Viral,Activation, Virus,Activations, Viral,Activations, Virus,Excision, Prophage,Excisions, Prophage,Induction, Prophage,Induction, Virus,Inductions, Prophage,Inductions, Virus,Prophage Excisions,Prophage Inductions,Viral Activations,Virus Activations,Virus Inductions

Related Publications

W L Mengeling, and K M Lager, and D M Volz, and S L Brockmeier
November 1983, American journal of veterinary research,
W L Mengeling, and K M Lager, and D M Volz, and S L Brockmeier
March 1990, American journal of veterinary research,
W L Mengeling, and K M Lager, and D M Volz, and S L Brockmeier
February 1976, Acta virologica,
W L Mengeling, and K M Lager, and D M Volz, and S L Brockmeier
October 2020, Journal of neurovirology,
W L Mengeling, and K M Lager, and D M Volz, and S L Brockmeier
October 1984, American journal of veterinary research,
W L Mengeling, and K M Lager, and D M Volz, and S L Brockmeier
December 2020, Vaccines,
W L Mengeling, and K M Lager, and D M Volz, and S L Brockmeier
February 2006, Journal of virology,
W L Mengeling, and K M Lager, and D M Volz, and S L Brockmeier
January 1977, Acta virologica,
W L Mengeling, and K M Lager, and D M Volz, and S L Brockmeier
June 2002, Journal of veterinary science,
W L Mengeling, and K M Lager, and D M Volz, and S L Brockmeier
April 1983, American journal of veterinary research,
Copied contents to your clipboard!