Androgen and estrogen concentrating neurons in chemosensory pathways of the male Syrian hamster brain. 1992

R I Wood, and R K Brabec, and J M Swann, and S W Newman
Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor 48109-0616.

The medial preoptic area (MPOA), bed nucleus of the stria terminalis (BNST), and medial amygdaloid nucleus (Me) are essential for male sexual behavior in the Syrian hamster. These nuclei received chemosensory stimuli and gonadal steroid signals, both of which are required for mating behavior. The objective of this study was to compare the distribution of androgen- and estrogen-concentrating neurons in MPOA, BNST, and Me in the adult male hamster using steroid autoradiography for estradiol (E2), testosterone (T) and dihydrotestosterone (DHT). Adult males (n = 4 per group) received two i.p. injections of tritiated steroid 4-7 days after castration. Six-microns frozen sections through the brain were mounted onto emulsion-coated slides, and exposed for 11-16 months. In MPOA, BNST, and Me, neurons were more abundant and heavily labelled after [3H]E2 treatment than after either [3H]T or [3H]DHT. Tritiated estradiol- and DHT-labeled cells were found throughout the rostrocaudal extent of Me, with a high concentration in posterodorsal Me. Tritiated testosterone treatment labelled cells largely within posterodorsal Me. In MPOA, the majority of E2-, T-, and DHT-labelled neurons were in the medial preoptic nucleus (MPN) and the preoptic continuation of the posteromedial bed nucleus of the stria terminalis (BNSTpm). Few T-labelled cells were present outside these subdivisions. In the BNST, E2- and DHT-labelled neurons were present in all subdivisions, whereas T labelling was confined to the antero- and posteromedial subdivisions of BNST. These results suggest that the distribution of androgen- and estrogen receptor-containing neurons overlap considerably in nuclei which transmit chemosensory signals in the control of mating behavior.

UI MeSH Term Description Entries
D008297 Male Males
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009919 Orchiectomy The surgical removal of one or both testicles. Castration, Male,Orchidectomy,Castrations, Male,Male Castration,Male Castrations,Orchidectomies,Orchiectomies
D011301 Preoptic Area Region of hypothalamus between the ANTERIOR COMMISSURE and OPTIC CHIASM. Area Preoptica,Lateral Preoptic Area,Medial Preoptic Area,Preoptic Nuclei,Area Preopticas,Area, Lateral Preoptic,Area, Medial Preoptic,Area, Preoptic,Areas, Lateral Preoptic,Areas, Medial Preoptic,Areas, Preoptic,Lateral Preoptic Areas,Medial Preoptic Areas,Nuclei, Preoptic,Nucleus, Preoptic,Preoptic Area, Lateral,Preoptic Area, Medial,Preoptic Areas,Preoptic Areas, Lateral,Preoptic Areas, Medial,Preoptic Nucleus,Preoptica, Area,Preopticas, Area
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002628 Chemoreceptor Cells Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood. Chemoreceptive Cells,Cell, Chemoreceptive,Cell, Chemoreceptor,Cells, Chemoreceptive,Cells, Chemoreceptor,Chemoreceptive Cell,Chemoreceptor Cell
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster

Related Publications

R I Wood, and R K Brabec, and J M Swann, and S W Newman
June 1993, Brain research,
R I Wood, and R K Brabec, and J M Swann, and S W Newman
November 1995, Neuroendocrinology,
R I Wood, and R K Brabec, and J M Swann, and S W Newman
November 1998, Annals of the New York Academy of Sciences,
R I Wood, and R K Brabec, and J M Swann, and S W Newman
September 2004, Hormones and behavior,
R I Wood, and R K Brabec, and J M Swann, and S W Newman
June 1999, Journal of neurobiology,
R I Wood, and R K Brabec, and J M Swann, and S W Newman
August 1992, Neuroscience letters,
R I Wood, and R K Brabec, and J M Swann, and S W Newman
February 1991, Neuroendocrinology,
R I Wood, and R K Brabec, and J M Swann, and S W Newman
May 1993, The Journal of comparative neurology,
R I Wood, and R K Brabec, and J M Swann, and S W Newman
November 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R I Wood, and R K Brabec, and J M Swann, and S W Newman
March 1983, Brain research,
Copied contents to your clipboard!