Biological activities of naturally occurring antibodies reactive with Candida albicans mannan. 2004

Thomas R Kozel, and Randall S MacGill, and Ann Percival, and Qing Zhou
Department of Microbiology and Immunology and the Cell and Molecular Biology Program, University of Nevada School of Medicine, Reno, Nevada 89557, USA. trkozel@med.unr.edu

Sera from normal adult humans may contain high levels of antibody reactive with Candida albicans mannan. This study examined selected biological activities of such antibodies, focusing on sera that were collected from 34 donors and analyzed individually. The results showed that antimannan titers were normally distributed. Reactivity as determined by enzyme-linked immunosorbent assay with serotype A mannan generally paralleled reactivity with serotype B. Analysis of the kinetics for activation of the complement system and deposition of complement component 3 (C3) onto serotype A and serotype B cells showed a decrease in the lag time that occurred before the onset of rapid accumulation of C3 that correlated with increasing antimannan titers. In contrast, there was a decrease in the overall rate of accumulation of C3 on serotype A cells that was strongly correlated with increasing antibody titers; serotype B cells showed no such decrease. An evaluation of the contribution of mannan antibody to opsonophagocytic killing showed that mannan antibody in individual sera and antimannan immunoglobulin G (IgG) affinity purified from human plasma contributed to killing by neutrophils in a dose-dependent fashion in the absence of a functional complement system. However, affinity-purified antibody in very high concentrations was inhibitory to both complement-dependent and complement-independent opsonophagocytosis, and this finding suggests a prozone-like effect. In contrast, if the complement system was functional, antimannan IgG was not needed for opsonophagocytic killing. These results suggest that naturally occurring mannan antibodies and the complement system are functionally redundant for opsonophagocytic killing by neutrophils.

UI MeSH Term Description Entries
D008351 Mannans Polysaccharides consisting of mannose units. Mannan
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D009895 Opsonin Proteins Proteins that bind to particles and cells to increase susceptibility to PHAGOCYTOSIS, especially ANTIBODIES bound to EPITOPES that attach to FC RECEPTORS. COMPLEMENT C3B may also participate. Opsonin,Opsonin Protein,Opsonins,Protein, Opsonin
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D002176 Candida albicans A unicellular budding fungus which is the principal pathogenic species causing CANDIDIASIS (moniliasis). Candida albicans var. stellatoidea,Candida stellatoidea,Dematium albicans,Monilia albicans,Myceloblastanon albicans,Mycotorula albicans,Parasaccharomyces albicans,Procandida albicans,Procandida stellatoidea,Saccharomyces albicans,Syringospora albicans
D003167 Complement Activation The sequential activation of serum COMPLEMENT PROTEINS to create the COMPLEMENT MEMBRANE ATTACK COMPLEX. Factors initiating complement activation include ANTIGEN-ANTIBODY COMPLEXES, microbial ANTIGENS, or cell surface POLYSACCHARIDES. Activation, Complement,Activations, Complement,Complement Activations
D003170 Complement Pathway, Alternative Complement activation initiated by the interaction of microbial ANTIGENS with COMPLEMENT C3B. When COMPLEMENT FACTOR B binds to the membrane-bound C3b, COMPLEMENT FACTOR D cleaves it to form alternative C3 CONVERTASE (C3BBB) which, stabilized by COMPLEMENT FACTOR P, is able to cleave multiple COMPLEMENT C3 to form alternative C5 CONVERTASE (C3BBB3B) leading to cleavage of COMPLEMENT C5 and the assembly of COMPLEMENT MEMBRANE ATTACK COMPLEX. Alternative Complement Pathway,Properdin Pathway,Alternative Complement Activation Pathway,Complement Activation Pathway, Alternative
D003171 Complement Pathway, Classical Complement activation initiated by the binding of COMPLEMENT C1 to ANTIGEN-ANTIBODY COMPLEXES at the COMPLEMENT C1Q subunit. This leads to the sequential activation of COMPLEMENT C1R and COMPLEMENT C1S subunits. Activated C1s cleaves COMPLEMENT C4 and COMPLEMENT C2 forming the membrane-bound classical C3 CONVERTASE (C4B2A) and the subsequent C5 CONVERTASE (C4B2A3B) leading to cleavage of COMPLEMENT C5 and the assembly of COMPLEMENT MEMBRANE ATTACK COMPLEX. Classical Complement Pathway,Classical Complement Activation Pathway,Complement Activation Pathway, Classical
D003176 Complement C3 A glycoprotein that is central in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C3 can be cleaved into COMPLEMENT C3A and COMPLEMENT C3B, spontaneously at low level or by C3 CONVERTASE at high level. The smaller fragment C3a is an ANAPHYLATOXIN and mediator of local inflammatory process. The larger fragment C3b binds with C3 convertase to form C5 convertase. C3 Complement,C3 Precursor,Complement 3,Complement C3 Precursor,Complement Component 3,Precursor-Complement 3,Pro-C3,Pro-Complement 3,C3 Precursor, Complement,C3, Complement,Complement, C3,Component 3, Complement,Precursor Complement 3,Precursor, C3,Precursor, Complement C3,Pro C3,Pro Complement 3
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Thomas R Kozel, and Randall S MacGill, and Ann Percival, and Qing Zhou
March 2003, Mini reviews in medicinal chemistry,
Thomas R Kozel, and Randall S MacGill, and Ann Percival, and Qing Zhou
June 2018, Applied microbiology and biotechnology,
Thomas R Kozel, and Randall S MacGill, and Ann Percival, and Qing Zhou
April 1994, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology,
Thomas R Kozel, and Randall S MacGill, and Ann Percival, and Qing Zhou
January 2012, Advances in experimental medicine and biology,
Thomas R Kozel, and Randall S MacGill, and Ann Percival, and Qing Zhou
February 1998, Allergy,
Thomas R Kozel, and Randall S MacGill, and Ann Percival, and Qing Zhou
January 1998, Lupus,
Thomas R Kozel, and Randall S MacGill, and Ann Percival, and Qing Zhou
May 2019, Natural product research,
Thomas R Kozel, and Randall S MacGill, and Ann Percival, and Qing Zhou
June 2004, Chemical reviews,
Thomas R Kozel, and Randall S MacGill, and Ann Percival, and Qing Zhou
December 2008, Clinical and vaccine immunology : CVI,
Thomas R Kozel, and Randall S MacGill, and Ann Percival, and Qing Zhou
June 1985, Science (New York, N.Y.),
Copied contents to your clipboard!