Ca2+ transport in mitochondria from yeast expressing recombinant aequorin. 2004

Dennis W Jung, and Patrick C Bradshaw, and Monica Litsky, and Douglas R Pfeiffer
Department of Molecular and Cellular Biochemistry, The Ohio State University Medical Center, Columbus, OH 43210, USA.

We have expressed aequorin in mitochondria of the yeast Saccharomyces cerevisiae and characterized the resulting strain with respect to mitochondrial Ca(2+) transport in vivo and in vitro. When intact cells are suspended in water containing 1.4 mM ethanol and 14 mM CaCl(2), the matrix free Ca(2+) concentration is 200 nM, similar to the values expected in cytoplasm. Addition of ionophore ETH 129 allows an active accumulation of Ca(2+) and promptly increases the value to 1.2 microM. Elevated Ca(2+) concentrations are maintained for periods of 6 min or longer under these conditions. Isolated yeast mitochondria oxidizing ethanol also accumulate Ca(2+) when ETH 129 is present, but the cation is not retained depending on the medium conditions. This finding confirms the presence of a Ca(2+) release mechanism that requires free fatty acids as previously described [P.C. Bradshaw et al. (2001) J. Biol. Chem. 276, 40502-40509]. When a respiratory substrate is not present, Ca(2+) enters and leaves yeast mitochondria slowly, at a specific activity near 0.2 nmol/min/mg protein. Transport under these conditions equilibrates the internal and external concentrations of Ca(2+) and is not affected by ruthenium red, uncouplers, or ionophores that perturb transmembrane gradients of charge and pH. This activity displays sigmoid kinetics and a K(1/2) value for Ca(2+) that is near to 900 nM, in the absence of ethanol or when it is present. It is furthermore shown that the activity coefficient of Ca(2+) in yeast mitochondria is a function of the matrix Ca(2+) content and is substantially larger than that in mammalian mitochondria. Characteristics of the aequorin-expressing strain appear suitable for its use in expression-based methods directed at cloning Ca(2+) transporters from mammalian mitochondria and for further examining the interrelationships between mitochondrial and cytoplasmic Ca(2+) in yeast.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000331 Aequorin A photoprotein isolated from the bioluminescent jellyfish Aequorea. It emits visible light by an intramolecular reaction when a trace amount of calcium ion is added. The light-emitting moiety in the bioluminescence reaction is believed to be 2-amino-3-benzyl-5-(p-hydroxyphenyl)pyrazine (AF-350). Aequorine
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D024101 Mitochondrial Proteins Proteins encoded by the mitochondrial genome or proteins encoded by the nuclear genome that are imported to and resident in the MITOCHONDRIA. Proteins, Mitochondrial,Mitochondrial Protein,Protein, Mitochondrial
D027682 Cation Transport Proteins Membrane proteins whose primary function is to facilitate the transport of positively charged molecules (cations) across a biological membrane. Cation Pumps,Cation Pump,Pump, Cation,Pumps, Cation

Related Publications

Dennis W Jung, and Patrick C Bradshaw, and Monica Litsky, and Douglas R Pfeiffer
January 1991, Biochemical and biophysical research communications,
Dennis W Jung, and Patrick C Bradshaw, and Monica Litsky, and Douglas R Pfeiffer
March 2011, Journal of biotechnology,
Dennis W Jung, and Patrick C Bradshaw, and Monica Litsky, and Douglas R Pfeiffer
February 1990, FEBS letters,
Dennis W Jung, and Patrick C Bradshaw, and Monica Litsky, and Douglas R Pfeiffer
September 1990, The Biochemical journal,
Dennis W Jung, and Patrick C Bradshaw, and Monica Litsky, and Douglas R Pfeiffer
October 1993, Cell calcium,
Dennis W Jung, and Patrick C Bradshaw, and Monica Litsky, and Douglas R Pfeiffer
December 1993, The EMBO journal,
Dennis W Jung, and Patrick C Bradshaw, and Monica Litsky, and Douglas R Pfeiffer
July 1992, Nature,
Dennis W Jung, and Patrick C Bradshaw, and Monica Litsky, and Douglas R Pfeiffer
May 1991, FEBS letters,
Dennis W Jung, and Patrick C Bradshaw, and Monica Litsky, and Douglas R Pfeiffer
April 1970, Biochimica et biophysica acta,
Dennis W Jung, and Patrick C Bradshaw, and Monica Litsky, and Douglas R Pfeiffer
August 1998, Biochimica et biophysica acta,
Copied contents to your clipboard!