Pharmacokinetic evaluation of 3'-azido-2', 3'-dideoxyuridine-5'-O-valinate-hydrochloride as a prodrug of the anti-HIV nucleoside 3'-azido-2', 3'-dideoxyuridine. 2003

Linghui Kong, and John S Cooperwood, and Shu-Hui Christine Huang, and Chung K Chu, and F Douglas Boudinot
Forest Laboratories, Inc., Jersey City, NJ, USA.

3'-Azido-2', 3'-dideoxyuridine (AZDU, AzddU, CS-87) has been shown to have potent anti-HIV activity in vitro. However, the compound exhibits a relatively short half-life and incomplete oral bioavailability in humans. In an effort to improve the pharmacokinetic properties of AZDU, prodrug 3'-azido-2',3'-dideoxyuridine-5'-O-valinate hydrochloride (AZDU-VAL) was synthesized by the esterification of 5'-OH function in AZDU. The objective of this study was to investigate the biotransformation and pharmacokinetics of AZDU-VAL along with its antiviral parent compound AZDU following intravenous and oral administration to rats. Adult male Sprague-Dawley rats were administered AZDU or AZDU-VAL by intravenous injection or oral gavage. Concentrations of AZDU-VAL and AZDU were determined by HPLC. Pharmacokinetic parameters were generated by area-moment analysis. The bioavailability of AZDU after oral administration was approximately 53%. The terminal phase half-life of the nucleoside analogue ranged between 0.6 h after intravenous administration and 1 h following oral administration. In vivo the prodrug was rapidly and efficiently biotransformed to yield AZDU following intravenous and oral administration. The apparent availability of AZDU was virtually complete following oral administration of prodrug AZDU-VAL averaging 101%. The bioavailability of AZDU following intravenous administration of AZDU-VAL averaged 106%. In summary, the disposition of AZDU was dose dependent over the dose range of 25-100 mg/kg. Renal clearance and steady state volume of distribution were lower at the higher dose level. Prodrug AZDU-VAL demonstrated improved oral bioavailability as evidenced by complete absorption and efficient bioconversion to AZDU. The results suggest that AZDU-VAL may be a promising prodrug for the delivery of AZDU.

UI MeSH Term Description Entries
D010599 Pharmacokinetics Dynamic and kinetic mechanisms of exogenous chemical DRUG LIBERATION; ABSORPTION; BIOLOGICAL TRANSPORT; TISSUE DISTRIBUTION; BIOTRANSFORMATION; elimination; and DRUG TOXICITY as a function of dosage, and rate of METABOLISM. LADMER, ADME and ADMET are abbreviations for liberation, absorption, distribution, metabolism, elimination, and toxicology. ADME,ADME-Tox,ADMET,Absorption, Distribution, Metabolism, Elimination, and Toxicology,Absorption, Distribution, Metabolism, and Elimination,Drug Kinetics,Kinetics, Drug,LADMER,Liberation, Absorption, Distribution, Metabolism, Elimination, and Response
D011355 Prodrugs A compound that, on administration, must undergo chemical conversion by metabolic processes before becoming the pharmacologically active drug for which it is a prodrug. Drug Precursor,Drug Precursors,Pro-Drug,Prodrug,Pro-Drugs,Precursor, Drug,Precursors, Drug,Pro Drug,Pro Drugs
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004951 Esterification The process of converting an acid into an alkyl or aryl derivative. Most frequently the process consists of the reaction of an acid with an alcohol in the presence of a trace of mineral acid as catalyst or the reaction of an acyl chloride with an alcohol. Esterification can also be accomplished by enzymatic processes. Esterifications
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000284 Administration, Oral The giving of drugs, chemicals, or other substances by mouth. Drug Administration, Oral,Administration, Oral Drug,Oral Administration,Oral Drug Administration,Administrations, Oral,Administrations, Oral Drug,Drug Administrations, Oral,Oral Administrations,Oral Drug Administrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001682 Biological Availability The extent to which the active ingredient of a drug dosage form becomes available at the site of drug action or in a biological medium believed to reflect accessibility to a site of action. Availability Equivalency,Bioavailability,Physiologic Availability,Availability, Biologic,Availability, Biological,Availability, Physiologic,Biologic Availability,Availabilities, Biologic,Availabilities, Biological,Availabilities, Physiologic,Availability Equivalencies,Bioavailabilities,Biologic Availabilities,Biological Availabilities,Equivalencies, Availability,Equivalency, Availability,Physiologic Availabilities
D001711 Biotransformation The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
D014633 Valine A branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and tissue repair. It is a precursor in the penicillin biosynthetic pathway. L-Valine,L Valine

Related Publications

Linghui Kong, and John S Cooperwood, and Shu-Hui Christine Huang, and Chung K Chu, and F Douglas Boudinot
March 1989, Biochemical pharmacology,
Linghui Kong, and John S Cooperwood, and Shu-Hui Christine Huang, and Chung K Chu, and F Douglas Boudinot
September 1988, Biochemical and biophysical research communications,
Linghui Kong, and John S Cooperwood, and Shu-Hui Christine Huang, and Chung K Chu, and F Douglas Boudinot
January 2002, Nucleosides, nucleotides & nucleic acids,
Linghui Kong, and John S Cooperwood, and Shu-Hui Christine Huang, and Chung K Chu, and F Douglas Boudinot
September 1998, The Journal of pharmacy and pharmacology,
Linghui Kong, and John S Cooperwood, and Shu-Hui Christine Huang, and Chung K Chu, and F Douglas Boudinot
July 1976, Journal of medicinal chemistry,
Linghui Kong, and John S Cooperwood, and Shu-Hui Christine Huang, and Chung K Chu, and F Douglas Boudinot
April 1991, Journal of medicinal chemistry,
Linghui Kong, and John S Cooperwood, and Shu-Hui Christine Huang, and Chung K Chu, and F Douglas Boudinot
June 1995, Drug metabolism and disposition: the biological fate of chemicals,
Linghui Kong, and John S Cooperwood, and Shu-Hui Christine Huang, and Chung K Chu, and F Douglas Boudinot
March 2001, Journal of medicinal chemistry,
Linghui Kong, and John S Cooperwood, and Shu-Hui Christine Huang, and Chung K Chu, and F Douglas Boudinot
August 2004, Antiviral research,
Linghui Kong, and John S Cooperwood, and Shu-Hui Christine Huang, and Chung K Chu, and F Douglas Boudinot
February 1990, AIDS research and human retroviruses,
Copied contents to your clipboard!