[Effects of agmatine on neuronal discharges in rat hippocampal CA1 area]. 2003

Ze-Min Wang, and Guang-Qi Sun, and Zhi-An Wang, and Rui-Rong He
Department of Pysiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017.

The effects of agmatine (Agm) on the discharges of neurons in CA1 area of hippocampal slices were examined by using extracellular recording technique. The results are as follows. (1) In response to the application of Agm (0.1-1.0 micromol/L) into the superfusate for 2 min, the spontaneous discharge rates (SDR) of 38/47 (80.9%) neurons were decreased significantly in a dose-dependent manner, while that of 9/47 (19.1%) neurons showed no change in discharge rate; (2) pretreatment with L-glutamate (L-Glu, 0.2 mmol/L) led to a marked increase in SDR of 9/12 (75%) neurons in an epileptiform pattern and that of 2/12 (25%) neurons were not affected, then after Agm (1.0 micromol/L) was applied into the superfusate for 2 min, the epileptiform discharges were suppressed significantly; (3) in 7 neurons, perfusion of the selective L-type calcium channel agonist, Bay K-8644 (0.1 micromol/L), induced an increase in the SDR of 6/7 (85.7%) neurons, while that of 1/7 (14.3%) neuron showed no change, and the discharges were also decreased by application of Agm (1.0 micromol/L) into the superfusate; and (4) application of NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 50 micromol/L) into the superfusate 5 min later also significantly increased the SDR in all 13 (100%) neurons; then Agm (1.0 micromol/L) applied into the superfusate inhibited the discharges of 11/13 (84.6%) neurons, while those of 2/13 (15.4%) neurons were not affected. These results suggest that agmatine can inhibit the spontaneous discharges and L-glutamate-, Bay K-8644- and L-NAME-induced discharges of hippocampal CA1 neurons. These inhibitory effects of agmatine may be related to the blockade of NMDA receptors and a reduction in calcium influx in hippocampal neurons

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002120 Calcium Channel Agonists Agents that increase calcium influx into calcium channels of excitable tissues. This causes vasoconstriction in VASCULAR SMOOTH MUSCLE and/or CARDIAC MUSCLE cells as well as stimulation of insulin release from pancreatic islets. Therefore, tissue-selective calcium agonists have the potential to combat cardiac failure and endocrinological disorders. They have been used primarily in experimental studies in cell and tissue culture. Calcium Channel Activators,Calcium Channel Agonists, Exogenous,Calcium Channel Agonist,Exogenous Calcium Channel Agonists,Activators, Calcium Channel,Agonist, Calcium Channel,Agonists, Calcium Channel,Channel Activators, Calcium,Channel Agonist, Calcium,Channel Agonists, Calcium
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000376 Agmatine Decarboxylated arginine, isolated from several plant and animal sources, e.g., pollen, ergot, herring sperm, octopus muscle. 1-Amino-4-guanidinobutane,4-(Aminobutyl)guanidine,1 Amino 4 guanidinobutane
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001498 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester A dihydropyridine derivative, which, in contrast to NIFEDIPINE, functions as a calcium channel agonist. The compound facilitates Ca2+ influx through partially activated voltage-dependent Ca2+ channels, thereby causing vasoconstrictor and positive inotropic effects. It is used primarily as a research tool. BK-8644,Bay R5417,Bay-K-8644,Bay-K-8644, (+)-Isomer,Bay-K-8644, (+-)-Isomer,Bay-K-8644, (-)-Isomer,Bay-K8644,Bay-R-5417,BK 8644,BK8644,Bay K 8644,Bay K8644,Bay R 5417,BayK8644,BayR5417,R5417, Bay

Related Publications

Ze-Min Wang, and Guang-Qi Sun, and Zhi-An Wang, and Rui-Rong He
June 2005, Sheng li xue bao : [Acta physiologica Sinica],
Ze-Min Wang, and Guang-Qi Sun, and Zhi-An Wang, and Rui-Rong He
September 2000, Bulletin of experimental biology and medicine,
Ze-Min Wang, and Guang-Qi Sun, and Zhi-An Wang, and Rui-Rong He
February 1998, Sheng li xue bao : [Acta physiologica Sinica],
Ze-Min Wang, and Guang-Qi Sun, and Zhi-An Wang, and Rui-Rong He
August 2018, Chinese medical journal,
Ze-Min Wang, and Guang-Qi Sun, and Zhi-An Wang, and Rui-Rong He
January 2002, The Kurume medical journal,
Ze-Min Wang, and Guang-Qi Sun, and Zhi-An Wang, and Rui-Rong He
January 2003, The Kurume medical journal,
Ze-Min Wang, and Guang-Qi Sun, and Zhi-An Wang, and Rui-Rong He
May 2007, Neurotoxicology,
Ze-Min Wang, and Guang-Qi Sun, and Zhi-An Wang, and Rui-Rong He
February 2008, Toxicology letters,
Ze-Min Wang, and Guang-Qi Sun, and Zhi-An Wang, and Rui-Rong He
August 1998, Neuroreport,
Ze-Min Wang, and Guang-Qi Sun, and Zhi-An Wang, and Rui-Rong He
December 2010, European journal of pharmacology,
Copied contents to your clipboard!