The in vitro differentiation of mouse embryonic stem cells into neutrophils. 2003

Jonathan G Lieber, and Gordon M Keller, and G Scott Worthen
Department of Medicine, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, Colorado 80206, USA.

A reliable and effective in vitro differentiation system is described for the production of functional neutrophils from mouse embryonic stem (ES) cells. A three-step culture method was developed that enables abundant production and effective harvesting of mature neutrophils at high purity without sorting. Utilization of the OP9 stromal cell line, which does not produce macrophage colony stimulating factor (M-CSF) was found to enhance the number, percentage and duration of neutrophils produced. Based on a number of criteria, morphologically and functionally mature neutrophils can be produced using this method in approximately 16 days. This differentiation system provides a useful model system for studying neutrophil development and maturation in vitro and the many factors that regulate this process. Morphologically mature ES-derived neutrophils can be grown in culture that produce superoxide, flux calcium and directionally respond to the chemoattractant MIP-2. In addition, they express the granulocyte markers Gr-1 and the neutrophil specific antigen, as well as specific chloroacetate esterase. Interestingly, during their development in culture, regional areas of apparent neutrophil production can be identified that recapitulate certain aspects of the marrow environment. As ES cells can be genetically modified, this system enables evaluation of the effects of specific genetic alterations on neutrophil differentiation and function.

UI MeSH Term Description Entries
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine
D017077 Culture Media, Conditioned Culture media containing biologically active components obtained from previously cultured cells or tissues that have released into the media substances affecting certain cell functions (e.g., growth, lysis). Conditioned Culture Media,Conditioned Culture Medium,Conditioned Media,Conditioned Medium,Culture Medium, Conditioned,Media, Conditioned,Medium, Conditioned

Related Publications

Jonathan G Lieber, and Gordon M Keller, and G Scott Worthen
May 2005, Journal of the Society for Gynecologic Investigation,
Jonathan G Lieber, and Gordon M Keller, and G Scott Worthen
January 2010, Thyroid : official journal of the American Thyroid Association,
Jonathan G Lieber, and Gordon M Keller, and G Scott Worthen
August 2004, Diabetologia,
Jonathan G Lieber, and Gordon M Keller, and G Scott Worthen
January 2008, Methods in enzymology,
Jonathan G Lieber, and Gordon M Keller, and G Scott Worthen
September 2005, Experimental cell research,
Jonathan G Lieber, and Gordon M Keller, and G Scott Worthen
July 2008, Current protocols in stem cell biology,
Jonathan G Lieber, and Gordon M Keller, and G Scott Worthen
July 2011, Cellular and molecular neurobiology,
Jonathan G Lieber, and Gordon M Keller, and G Scott Worthen
January 2007, Wei sheng yan jiu = Journal of hygiene research,
Jonathan G Lieber, and Gordon M Keller, and G Scott Worthen
September 2010, Wei sheng yan jiu = Journal of hygiene research,
Jonathan G Lieber, and Gordon M Keller, and G Scott Worthen
September 2003, Zhonghua yi xue za zhi,
Copied contents to your clipboard!