Stretch activation of GTP-binding proteins in C2C12 myoblasts. 2004

Craig B Clark, and Nathan L McKnight, and John A Frangos
Department of Bioengineering, University of California San Diego, La Jolla, CA 92093-0142, USA.

Mechanical stimulation has been proposed as a fundamental determinant of muscle physiology. The mechanotransduction of strain and strain rate in C2C12 myoblasts were investigated utilizing a radiolabeled GTP analogue to detect stretch-induced GTP-binding protein activation. Cyclic uniaxial strains of 10% and 20% at a strain rate of 20% s(-1) rapidly (within 1 min) activated a 25-kDa GTPase (183 +/- 17% and 186 +/- 19%, respectively), while 2% strain failed to elicit a response (109 +/- 11%) relative to controls. One, five, and sixty cycles of 10% strain elicited 187 +/- 20%, 183 +/- 17%, and 276 +/- 38% increases in activation. A single 10% stretch at 20% s(-1), but not 0.3% s(-1), resulted in activation. Insulin activated the same 25-kDa band in a dose-dependent manner. Western blot analysis revealed a panel of GTP-binding proteins in C2C12 myoblasts, and tentatively identified the 25-kDa GTPase as rab5. In separate experiments, a 40-kDa protein tentatively identified as Galpha(i) was activated (240 +/- 16%) by 10% strain at 1 Hz for 15 min. These results demonstrate the rapid activation of GTP-binding proteins by mechanical strain in myoblasts in both a strain magnitude- and strain rate-dependent manner.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical
D016474 Weight-Bearing The physical state of supporting an applied load. This often refers to the weight-bearing bones or joints that support the body's weight, especially those in the spine, hip, knee, and foot. Load-Bearing,Axial Loading,Loadbearing,Weightbearing,Axial Loadings,Load Bearing,Weight Bearing
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Craig B Clark, and Nathan L McKnight, and John A Frangos
December 2016, Molecular medicine reports,
Craig B Clark, and Nathan L McKnight, and John A Frangos
September 2010, Journal of muscle research and cell motility,
Craig B Clark, and Nathan L McKnight, and John A Frangos
January 1991, Progress in hemostasis and thrombosis,
Craig B Clark, and Nathan L McKnight, and John A Frangos
October 1996, Haemostasis,
Craig B Clark, and Nathan L McKnight, and John A Frangos
February 1991, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Craig B Clark, and Nathan L McKnight, and John A Frangos
October 1991, Thrombosis and haemostasis,
Craig B Clark, and Nathan L McKnight, and John A Frangos
July 1991, Seikagaku. The Journal of Japanese Biochemical Society,
Craig B Clark, and Nathan L McKnight, and John A Frangos
January 2016, Frontiers in bioengineering and biotechnology,
Craig B Clark, and Nathan L McKnight, and John A Frangos
January 2018, Cells, tissues, organs,
Copied contents to your clipboard!