Transcriptional regulation of BACE1, the beta-amyloid precursor protein beta-secretase, by Sp1. 2004

Michelle A Christensen, and Weihui Zhou, and Hong Qing, and Anna Lehman, and Sjaak Philipsen, and Weihong Song
Department of Psychiatry, Brain Research Center, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.

Proteolytic processing of the beta-amyloid precursor protein (APP) at the beta site is essential to generate Abeta. BACE1, the major beta-secretase involved in cleaving APP, has been identified as a type 1 membrane-associated aspartyl protease. We have cloned a 2.1-kb fragment upstream of the human BACE1 gene and identified key regions necessary for promoter activity. BACE1 gene expression is controlled by a TATA-less promoter. The region of bp -619 to +46 is the minimal promoter to control the transcription of the BACE1 gene. Several putative cis-acting elements, such as a GC box, HSF-1, a PU box, AP1, AP2, and lymphokine response element, are found in the 5' flanking region of the BACE1 gene. Transcriptional activation and gel shift assays demonstrated that the BACE1 promoter contains a functional Sp1 response element, and overexpression of the transcription factor Sp1 potentiates BACE gene expression and APP processing to generate Abeta. Furthermore, Sp1 knockout reduced BACE1 expression. These results suggest that BACE1 gene expression is tightly regulated at the transcriptional level and that the transcription factor Sp1 plays an important role in regulation of BACE1 to process APP generating Abeta in Alzheimer's disease.

UI MeSH Term Description Entries
D008926 Plicamycin A tricyclic pentaglycosidic antibiotic from Streptomyces strains that inhibits RNA and protein synthesis by adhering to DNA. It is used as a fluorescent dye and as an antineoplastic agent, especially in bone and testicular tumors. Plicamycin is also used to reduce hypercalcemia, especially that due to malignancies. Aureolic Acid,Mithramycin,Mitramycin
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Michelle A Christensen, and Weihui Zhou, and Hong Qing, and Anna Lehman, and Sjaak Philipsen, and Weihong Song
October 2003, The Journal of cell biology,
Michelle A Christensen, and Weihui Zhou, and Hong Qing, and Anna Lehman, and Sjaak Philipsen, and Weihong Song
October 2008, The Journal of biological chemistry,
Michelle A Christensen, and Weihui Zhou, and Hong Qing, and Anna Lehman, and Sjaak Philipsen, and Weihong Song
March 2010, Journal of cellular biochemistry,
Michelle A Christensen, and Weihui Zhou, and Hong Qing, and Anna Lehman, and Sjaak Philipsen, and Weihong Song
January 2003, Journal of molecular neuroscience : MN,
Michelle A Christensen, and Weihui Zhou, and Hong Qing, and Anna Lehman, and Sjaak Philipsen, and Weihong Song
January 2006, Neuro-degenerative diseases,
Michelle A Christensen, and Weihui Zhou, and Hong Qing, and Anna Lehman, and Sjaak Philipsen, and Weihong Song
March 2010, The Journal of biological chemistry,
Michelle A Christensen, and Weihui Zhou, and Hong Qing, and Anna Lehman, and Sjaak Philipsen, and Weihong Song
June 2007, Journal of neurochemistry,
Michelle A Christensen, and Weihui Zhou, and Hong Qing, and Anna Lehman, and Sjaak Philipsen, and Weihong Song
June 1997, Neurochemistry international,
Michelle A Christensen, and Weihui Zhou, and Hong Qing, and Anna Lehman, and Sjaak Philipsen, and Weihong Song
June 2012, Molecular biology of the cell,
Michelle A Christensen, and Weihui Zhou, and Hong Qing, and Anna Lehman, and Sjaak Philipsen, and Weihong Song
January 1996, Biochemical and biophysical research communications,
Copied contents to your clipboard!