Endocytosis of hepatic lipase and lipoprotein lipase into rat liver hepatocytes in vivo is mediated by the low density lipoprotein receptor-related protein. 2004

Marcel Vergés, and Andre Bensadoun, and Joachim Herz, and John D Belcher, and Richard J Havel
Cardiovascular Research Institute, University of California, San Francisco, California 94143, USA.

In isolated cell studies, the internalization and degradation of hepatic lipase (HL) has been linked to its binding to the low density lipoprotein receptor-related protein (LRP). We have utilized the receptor-associated protein (RAP), a universal inhibitor of high affinity ligand binding to LRP, to evaluate the participation of LRP in the endocytosis of HL and lipoprotein lipase (LPL). We isolated a total endosome fraction from rat livers after a 30-min infusion of recombinant RAP, administered as a glutathione S-transferase conjugate (GST-RAP). GST-RAP infusion had no effect on the concentration of HL in liver homogenates, but its concentration in blood plasma increased progressively by 20%, and enrichment over homogenate of HL in endosomes was reduced by 50% as compared with infusion of GST alone. The concentrations of LPL in liver and plasma were 1.4 and 0.5%, respectively, those of HL, but endosomal enrichment of the two enzymes was similar ( approximately 10-fold). GST-RAP infusion had no effect on the concentration of LPL in liver but increased its concentration in blood plasma by 250% and reduced its endosomal enrichment by 95% or greater. GST-RAP infusion also reduced endosomal enrichment of LRP by 40%, but enrichment of several other endocytic receptors was unaffected. Endosomal enrichment of several membrane trafficking proteins associated with the endocytic pathway in hepatocytes was unaffected by GST-RAP with the exception of early endosome endosome antigen 1, which was reduced by 85%. We conclude that HL is partially and LPL almost exclusively taken up into rat hepatocytes after binding to the endocytic receptor LRP.

UI MeSH Term Description Entries
D008049 Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. It is produced by glands on the tongue and by the pancreas and initiates the digestion of dietary fats. (From Dorland, 27th ed) EC 3.1.1.3. Triacylglycerol Lipase,Tributyrinase,Triglyceride Lipase,Acid Lipase,Acid Lipase A,Acid Lipase B,Acid Lipase I,Acid Lipase II,Exolipase,Monoester Lipase,Triacylglycerol Hydrolase,Triglyceridase,Triolean Hydrolase,Hydrolase, Triacylglycerol,Hydrolase, Triolean,Lipase A, Acid,Lipase B, Acid,Lipase I, Acid,Lipase II, Acid,Lipase, Acid,Lipase, Monoester,Lipase, Triglyceride
D008071 Lipoprotein Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34. Heparin-Clearing Factor,Lipemia-Clearing Factor,Diacylglycerol Lipase,Diglyceride Lipase,Post-Heparin Lipase,Postheparin Lipase,Postheparin Lipoprotein Lipase,Factor, Heparin-Clearing,Factor, Lipemia-Clearing,Heparin Clearing Factor,Lipase, Diacylglycerol,Lipase, Diglyceride,Lipase, Lipoprotein,Lipase, Post-Heparin,Lipase, Postheparin,Lipase, Postheparin Lipoprotein,Lipemia Clearing Factor,Lipoprotein Lipase, Postheparin,Post Heparin Lipase
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D022781 Hepatocytes The main structural component of the LIVER. They are specialized EPITHELIAL CELLS that are organized into interconnected plates called lobules. Hepatic Cells,Cell, Hepatic,Cells, Hepatic,Hepatic Cell,Hepatocyte

Related Publications

Marcel Vergés, and Andre Bensadoun, and Joachim Herz, and John D Belcher, and Richard J Havel
January 1986, The International journal of biochemistry,
Marcel Vergés, and Andre Bensadoun, and Joachim Herz, and John D Belcher, and Richard J Havel
April 1995, The Journal of biological chemistry,
Marcel Vergés, and Andre Bensadoun, and Joachim Herz, and John D Belcher, and Richard J Havel
July 2009, Drug delivery,
Marcel Vergés, and Andre Bensadoun, and Joachim Herz, and John D Belcher, and Richard J Havel
July 1990, Laboratory investigation; a journal of technical methods and pathology,
Marcel Vergés, and Andre Bensadoun, and Joachim Herz, and John D Belcher, and Richard J Havel
March 2011, Molecular microbiology,
Marcel Vergés, and Andre Bensadoun, and Joachim Herz, and John D Belcher, and Richard J Havel
July 1993, The Journal of biological chemistry,
Marcel Vergés, and Andre Bensadoun, and Joachim Herz, and John D Belcher, and Richard J Havel
May 1995, Proceedings of the National Academy of Sciences of the United States of America,
Marcel Vergés, and Andre Bensadoun, and Joachim Herz, and John D Belcher, and Richard J Havel
December 1989, Proceedings of the National Academy of Sciences of the United States of America,
Marcel Vergés, and Andre Bensadoun, and Joachim Herz, and John D Belcher, and Richard J Havel
September 2001, The Journal of biological chemistry,
Marcel Vergés, and Andre Bensadoun, and Joachim Herz, and John D Belcher, and Richard J Havel
October 1991, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!