Oncogenic and activated wild-type ras-p21 proteins induce different isoforms of protein kinase C in mitogenic signal transduction. 2003

Lyndon Chie, and Yongxia Qu, and Denise Chung, and Mohammed Boutjdir, and Matthew R Pincus
Department of Pathology and Laboratory Medicine, New York Harbor VA Medical Center, 800 Poly Place, Brooklyn, NY 11209, USA.

We have previously found that the protein kinase C (PKC) inhibitor, CGP 41 251, blocks oncogenic ras-p21 protein- and beta-PKC-induced oocyte maturation, but only weakly inhibits insulin-induced oocyte maturation (which requires activation of wild-type endogenous ras-p21). Because the dose-response curves for inhibition of oncogenic p21- and beta-PKC-induced oocyte maturation by CGP 41 251 superimpose and because the ras-p21-inactivating antibody, Y13-259, does not inhibit beta-PKC-induced oocyte maturation, we concluded that the oncogenic, but not wild-type, protein requires beta-PKC as a downstream target. Because multiple isoforms of PKC exist and several of these, such as epsilon-PKC, have been found to be important on ras signal transduction pathways, we have investigated which PKC isoforms are critical to each ras protein. For this purpose, we used PKC-isoform-specific inhibitors, which have been shown to inhibit selectively the function and translocation of PKC isoforms in vitro and in vivo. Specifically, the peptides KLFIMN, QEVIRN, and EAVSLKPT each inhibit beta-1, beta-2, and epsilon-PKC, respectively, but do not cross-inhibit other PKC isoforms. We find that the epsilon-PKC inhibitory peptide strongly blocks insulin- but not oncogenic ras-p21-induced oocyte maturation whereas the beta-2 inhibitory peptide more strongly inhibits oncogenic ras-p21-induced oocyte maturation, corroborating our previous studies. The beta-1 inhibitory peptide has little effect on either protein. We conclude that selective inhibition of individual PKC isoforms permits the distinction between signal transduction initiated by oncogenic and activated wild-type p21 proteins and implicate different specific PKC isoforms in mitogenic signal transduction by each of these proteins. The ability to dissect the role of individual PKC isozymes in this regulation is of therapeutic significance.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

Lyndon Chie, and Yongxia Qu, and Denise Chung, and Mohammed Boutjdir, and Matthew R Pincus
January 2003, Annals of clinical and laboratory science,
Lyndon Chie, and Yongxia Qu, and Denise Chung, and Mohammed Boutjdir, and Matthew R Pincus
January 1992, International review of cytology,
Lyndon Chie, and Yongxia Qu, and Denise Chung, and Mohammed Boutjdir, and Matthew R Pincus
June 1993, Gan to kagaku ryoho. Cancer & chemotherapy,
Lyndon Chie, and Yongxia Qu, and Denise Chung, and Mohammed Boutjdir, and Matthew R Pincus
November 2004, Zhonghua wai ke za zhi [Chinese journal of surgery],
Lyndon Chie, and Yongxia Qu, and Denise Chung, and Mohammed Boutjdir, and Matthew R Pincus
August 1992, The Journal of biological chemistry,
Lyndon Chie, and Yongxia Qu, and Denise Chung, and Mohammed Boutjdir, and Matthew R Pincus
September 2000, Nature cell biology,
Lyndon Chie, and Yongxia Qu, and Denise Chung, and Mohammed Boutjdir, and Matthew R Pincus
August 1993, Cell,
Lyndon Chie, and Yongxia Qu, and Denise Chung, and Mohammed Boutjdir, and Matthew R Pincus
January 2013, Cancer discovery,
Lyndon Chie, and Yongxia Qu, and Denise Chung, and Mohammed Boutjdir, and Matthew R Pincus
October 2001, Oncogene,
Copied contents to your clipboard!