A Biacore biosensor method for detailed kinetic binding analysis of small molecule inhibitors of p38alpha mitogen-activated protein kinase. 2004

David Casper, and Marina Bukhtiyarova, and Eric B Springman
Department of Biochemistry, Locus Pharmaceuticals, Inc, Four Valley Square, 512 Township Line Road, Blue Bell, PA 19422, USA.

Protein kinases are emerging as one of the most intensely studied classes of enzymes as their central roles in physiologically and clinically important cellular signaling events become more clearly understood. We report here the development of a real-time, label-free method to study protein kinase inhibitor binding kinetics using surface plasmon resonance-based biomolecular interaction analysis (Biacore). Utilizing p38alpha mitogen-activated protein kinase as a model system, we studied the binding properties of two known small molecule p38alpha inhibitors (SB-203580 and SKF-86002). Direct coupling of p38alpha to the biosensor surface in the presence of a reversible structure-stabilizing ligand (SB-203580) consistently produced greater than 90% active protein on the biosensor surface. The dissociation and kinetic constants derived using this Biacore method are in excellent agreement with values determined by other methods. Additionally, we extend the method to study the thermodynamics of small molecule binding to p38alpha and derive a detailed thermodynamic reaction pathway for SB-203580. The Biacore method reported here provides an efficient way to directly and reproducibly examine dissociation constants, kinetics, and thermodynamics for small molecules binding to p38alpha and possibly other protein kinases. Immobilization in the presence of a stabilizing ligand may further represent a broadly applicable paradigm for creation of highly active biosensor surfaces.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013844 Thiazoles Heterocyclic compounds where the ring system is composed of three CARBON atoms, a SULFUR and NITROGEN atoms. Thiazole

Related Publications

David Casper, and Marina Bukhtiyarova, and Eric B Springman
July 2008, Expert opinion on drug discovery,
David Casper, and Marina Bukhtiyarova, and Eric B Springman
June 2010, Analytical biochemistry,
David Casper, and Marina Bukhtiyarova, and Eric B Springman
October 2009, Journal of medicinal chemistry,
David Casper, and Marina Bukhtiyarova, and Eric B Springman
August 2006, Assay and drug development technologies,
David Casper, and Marina Bukhtiyarova, and Eric B Springman
September 2006, The Journal of biological chemistry,
David Casper, and Marina Bukhtiyarova, and Eric B Springman
January 2018, Frontiers in pharmacology,
David Casper, and Marina Bukhtiyarova, and Eric B Springman
November 2009, Experimental eye research,
David Casper, and Marina Bukhtiyarova, and Eric B Springman
April 2008, FEBS letters,
David Casper, and Marina Bukhtiyarova, and Eric B Springman
September 2000, Proceedings of the National Academy of Sciences of the United States of America,
David Casper, and Marina Bukhtiyarova, and Eric B Springman
January 2018, Frontiers in pharmacology,
Copied contents to your clipboard!