Activation of intestinal smooth muscle cells by interstitial cells of Cajal in simulation studies. 2004

Nicholas Sperelakis, and Edwin E Daniel
Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA. Spereln@uc.edu.

Activation of a two-dimensional sheet network (5 parallel chains of 5 cells each) of simulated intestinal smooth muscle cells (SMCs) by one interstitial cell of Cajal (ICC) was modeled by PSpice simulation. The network of 25 cells was not interconnected by gap-junction channels; instead, excitation was transmitted by the electric field that develops in the junctional clefts (JC) when the prejunctional membrane fires an action potential (AP). Transverse propagation between the parallel chains occurs similarly. The ICC cell was connected to cell E5 of the network [5th cell of the 5th (E) chain] via a high-resistance junction. The stimulating current, applied to the ICC cell interior, was made to resemble the endogenous undershooting slow wave (I(SW)). An I(SW) of 2.4 nA (over a rise time of 4 ms) took the ICC cell from a resting potential (RP) of -80 mV to a membrane potential of -41 mV. The slow wave produced a large negative cleft potential in the JC (V(JC); ICC-E5). The V(jc) brought the postjunctional membrane of E5 to threshold, causing this cell to fire an AP. This, in turn, propagated throughout the SMC network. If the ICC cell was given an RP of -55 mV (like SMC) and a slow wave of 40 mV amplitude (I(SW) of 1.8 nA), it still activated the SMC network. This was also true when the ICC cell was made excitable (developing an overshooting, fast-rising AP). In summary, one ICC cell displaying a slow wave was capable of activating a network of SMC in the absence of gap junctions.

UI MeSH Term Description Entries
D007422 Intestines The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE. Intestine
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D032389 Myocytes, Smooth Muscle Non-striated, elongated, spindle-shaped cells found lining the digestive tract, uterus, and blood vessels. They are derived from specialized myoblasts (MYOBLASTS, SMOOTH MUSCLE). Smooth Muscle Cells,Cell, Smooth Muscle,Cells, Smooth Muscle,Myocyte, Smooth Muscle,Smooth Muscle Cell,Smooth Muscle Myocyte,Smooth Muscle Myocytes

Related Publications

Nicholas Sperelakis, and Edwin E Daniel
December 1999, Microscopy research and technique,
Nicholas Sperelakis, and Edwin E Daniel
March 2005, American journal of physiology. Gastrointestinal and liver physiology,
Nicholas Sperelakis, and Edwin E Daniel
December 2003, Current opinion in pharmacology,
Nicholas Sperelakis, and Edwin E Daniel
March 1990, Canadian journal of physiology and pharmacology,
Nicholas Sperelakis, and Edwin E Daniel
November 2006, The Journal of physiology,
Nicholas Sperelakis, and Edwin E Daniel
January 1982, Advances in anatomy, embryology, and cell biology,
Nicholas Sperelakis, and Edwin E Daniel
July 2006, Acta physiologica (Oxford, England),
Nicholas Sperelakis, and Edwin E Daniel
April 2009, Virchows Archiv : an international journal of pathology,
Copied contents to your clipboard!