Efflux-mediated drug resistance in bacteria. 2004

Xian-Zhi Li, and Hiroshi Nikaido
Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA.

Drug resistance in bacteria, and especially resistance to multiple antibacterials, has attracted much attention in recent years. In addition to the well known mechanisms, such as inactivation of drugs and alteration of targets, active efflux is now known to play a major role in the resistance of many species to antibacterials. Drug-specific efflux (e.g. that of tetracycline) has been recognised as the major mechanism of resistance to this drug in Gram-negative bacteria. In addition, we now recognise that multidrug efflux pumps are becoming increasingly important. Such pumps play major roles in the antiseptic resistance of Staphylococcus aureus, and fluoroquinolone resistance of S. aureus and Streptococcus pneumoniae. Multidrug pumps, often with very wide substrate specificity, are not only essential for the intrinsic resistance of many Gram-negative bacteria but also produce elevated levels of resistance when overexpressed. Paradoxically, 'advanced' agents for which resistance is unlikely to be caused by traditional mechanisms, such as fluoroquinolones and beta-lactams of the latest generations, are likely to select for overproduction mutants of these pumps and make the bacteria resistant in one step to practically all classes of antibacterial agents. Such overproduction mutants are also selected for by the use of antiseptics and biocides, increasingly incorporated into consumer products, and this is also of major concern. We can consider efflux pumps as potentially effective antibacterial targets. Inhibition of efflux pumps by an efflux pump inhibitor would restore the activity of an agent subject to efflux. An alternative approach is to develop antibacterials that would bypass the action of efflux pumps.

UI MeSH Term Description Entries
D006090 Gram-Negative Bacteria Bacteria which lose crystal violet stain but are stained pink when treated by Gram's method. Gram Negative Bacteria
D006094 Gram-Positive Bacteria Bacteria which retain the crystal violet stain when treated by Gram's method. Gram Positive Bacteria
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D024901 Drug Resistance, Multiple, Bacterial The ability of bacteria to resist or to become tolerant to several structurally and functionally distinct drugs simultaneously. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Drug Resistance, Extensive, Bacterial,Drug Resistance, Extensively, Bacterial,Extensive Antibacterial Drug Resistance,Extensively Antibacterial Drug Resistance,Multidrug Resistance, Bacterial,Multiple Antibacterial Drug Resistance,Bacterial Multidrug Resistance,Bacterial Multidrug Resistances,Resistance, Bacterial Multidrug
D026901 Membrane Transport Proteins Membrane proteins whose primary function is to facilitate the transport of molecules across a biological membrane. Included in this broad category are proteins involved in active transport (BIOLOGICAL TRANSPORT, ACTIVE), facilitated transport and ION CHANNELS. Biological Pump,Membrane Transport Protein,Membrane Transporter,Membrane Transporters,Metabolic Pump,Permease,Biological Pumps,Metabolic Pumps,Permeases,Pump, Biologic,Pump, Biological,Pump, Metabolic,Pumps, Biological,Pumps, Metabolic,Biologic Pump,Protein, Membrane Transport,Transport Protein, Membrane,Transport Proteins, Membrane,Transporter, Membrane,Transporters, Membrane

Related Publications

Xian-Zhi Li, and Hiroshi Nikaido
October 2001, Current opinion in microbiology,
Xian-Zhi Li, and Hiroshi Nikaido
December 2004, Pathologie-biologie,
Xian-Zhi Li, and Hiroshi Nikaido
January 2016, Current drug targets,
Xian-Zhi Li, and Hiroshi Nikaido
April 2009, Clinical microbiology reviews,
Xian-Zhi Li, and Hiroshi Nikaido
September 2000, Antimicrobial agents and chemotherapy,
Xian-Zhi Li, and Hiroshi Nikaido
December 1994, Trends in microbiology,
Xian-Zhi Li, and Hiroshi Nikaido
January 2024, Current drug research reviews,
Xian-Zhi Li, and Hiroshi Nikaido
May 2009, Proceedings of the National Academy of Sciences of the United States of America,
Xian-Zhi Li, and Hiroshi Nikaido
October 2004, Current opinion in pharmacology,
Copied contents to your clipboard!