Thrombin stimulates IL-6 and IL-8 expression in cytomegalovirus-infected human retinal pigment epithelial cells. 2004

Martin Scholz, and Jens-Uwe Vogel, and Gerold Höver, and Ruslan Kotchetkov, and Jaroslav Cinatl, and Hans Wilhelm Doerr, and Jindrich Cinatl
Institut für Medizinische Virologie, Zentrum der Hygiene, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany.

Recently, we reported that thrombin specifically stimulates protease-activated receptor-1 (PAR-1) signaling in RPE entailing inhibition of Sp1 dependent HCMV replication. We now studied whether thrombin modulates the expression of the proinflammatory cytokine/chemokines IL-6 and IL-8 in mock- and cytomegalovirus-infected human retinal pigment epithelial cells (RPE). Our data show that thrombin/PAR-1 stimulates IL-6 and IL-8 gene transcription and protein secretion in both mock- and HCMV-infected RPE. Thrombin/PAR-1-mediated signaling stimulated PKC and NF-kappaB-dependent IL-6 and IL-8 gene expression via phosphoinositide 3-kinase and further downstream via p42/44 and p38 MAPKs. Thus, thrombin/PAR-1-mediated IL-6/IL-8 gene expression is uncoupled from Sp1 inhibition and may support proinflammatory pathomechanisms probably involved in hemorrhage/HCMV retinitis progression.

UI MeSH Term Description Entries
D010857 Pigment Epithelium of Eye The layer of pigment-containing epithelial cells in the RETINA; the CILIARY BODY; and the IRIS in the eye. Eye Pigment Epithelium
D003586 Cytomegalovirus Infections Infection with CYTOMEGALOVIRUS, characterized by enlarged cells bearing intranuclear inclusions. Infection may be in almost any organ, but the salivary glands are the most common site in children, as are the lungs in adults. CMV Inclusion,CMV Inclusions,Congenital CMV Infection,Congenital Cytomegalovirus Infection,Cytomegalic Inclusion Disease,Cytomegalovirus Colitis,Cytomegalovirus Inclusion,Cytomegalovirus Inclusion Disease,Cytomegalovirus Inclusions,Inclusion Disease,Perinatal CMV Infection,Perinatal Cytomegalovirus Infection,Renal Tubular Cytomegalovirus Inclusion,Renal Tubular Cytomegalovirus Inclusions,Salivary Gland Virus Disease,Severe Cytomegalovirus Infection,Severe Cytomegalovirus Infections,Infections, Cytomegalovirus,CMV Infection, Congenital,CMV Infection, Perinatal,Colitis, Cytomegalovirus,Congenital CMV Infections,Congenital Cytomegalovirus Infections,Cytomegalic Inclusion Diseases,Cytomegalovirus Colitides,Cytomegalovirus Inclusion Diseases,Cytomegalovirus Infection,Cytomegalovirus Infection, Congenital,Cytomegalovirus Infection, Perinatal,Cytomegalovirus Infection, Severe,Cytomegalovirus Infections, Severe,Disease, Cytomegalic Inclusion,Disease, Cytomegalovirus Inclusion,Diseases, Cytomegalovirus Inclusion,Inclusion Disease, Cytomegalic,Inclusion Disease, Cytomegalovirus,Inclusion Diseases,Inclusion Diseases, Cytomegalovirus,Inclusion, CMV,Inclusion, Cytomegalovirus,Infection, Congenital CMV,Infection, Congenital Cytomegalovirus,Infection, Cytomegalovirus,Infection, Perinatal CMV,Infection, Perinatal Cytomegalovirus,Infection, Severe Cytomegalovirus,Perinatal CMV Infections,Perinatal Cytomegalovirus Infections
D003587 Cytomegalovirus A genus of the family HERPESVIRIDAE, subfamily BETAHERPESVIRINAE, infecting the salivary glands, liver, spleen, lungs, eyes, and other organs, in which they produce characteristically enlarged cells with intranuclear inclusions. Infection with Cytomegalovirus is also seen as an opportunistic infection in AIDS. Herpesvirus 5, Human,Human Herpesvirus 5,Salivary Gland Viruses,HHV 5,Herpesvirus 5 (beta), Human,Cytomegaloviruses,Salivary Gland Virus,Virus, Salivary Gland,Viruses, Salivary Gland
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013917 Thrombin An enzyme formed from PROTHROMBIN that converts FIBRINOGEN to FIBRIN. Thrombase,Thrombin JMI,Thrombin-JMI,Thrombinar,Thrombostat,alpha-Thrombin,beta,gamma-Thrombin,beta-Thrombin,gamma-Thrombin,JMI, Thrombin
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015850 Interleukin-6 A cytokine that stimulates the growth and differentiation of B-LYMPHOCYTES and is also a growth factor for HYBRIDOMAS and plasmacytomas. It is produced by many different cells including T-LYMPHOCYTES; MONOCYTES; and FIBROBLASTS. Hepatocyte-Stimulating Factor,Hybridoma Growth Factor,IL-6,MGI-2,Myeloid Differentiation-Inducing Protein,Plasmacytoma Growth Factor,B Cell Stimulatory Factor-2,B-Cell Differentiation Factor,B-Cell Differentiation Factor-2,B-Cell Stimulatory Factor 2,B-Cell Stimulatory Factor-2,BSF-2,Differentiation Factor, B-Cell,Differentiation Factor-2, B-Cell,IFN-beta 2,IL6,Interferon beta-2,B Cell Differentiation Factor,B Cell Differentiation Factor 2,B Cell Stimulatory Factor 2,Differentiation Factor 2, B Cell,Differentiation Factor, B Cell,Differentiation-Inducing Protein, Myeloid,Growth Factor, Hybridoma,Growth Factor, Plasmacytoma,Hepatocyte Stimulating Factor,Interferon beta 2,Interleukin 6,Myeloid Differentiation Inducing Protein,beta-2, Interferon
D016209 Interleukin-8 A member of the CXC chemokine family that plays a role in the regulation of the acute inflammatory response. It is secreted by variety of cell types and induces CHEMOTAXIS of NEUTROPHILS and other inflammatory cells. CXCL8 Chemokine,Chemokine CXCL8,Chemotactic Factor, Macrophage-Derived,Chemotactic Factor, Neutrophil, Monocyte-Derived,IL-8,Neutrophil-Activating Peptide, Lymphocyte-Derived,Neutrophil-Activating Peptide, Monocyte-Derived,AMCF-I,Alveolar Macrophage Chemotactic Factor-I,Anionic Neutrophil-Activating Peptide,Chemokines, CXCL8,Chemotactic Factor, Neutrophil,Granulocyte Chemotactic Peptide-Interleukin-8,IL8,Monocyte-Derived Neutrophil Chemotactic Factor,Neutrophil Activation Factor,Alveolar Macrophage Chemotactic Factor I,Anionic Neutrophil Activating Peptide,CXCL8 Chemokines,CXCL8, Chemokine,Chemokine, CXCL8,Chemotactic Factor, Macrophage Derived,Chemotactic Peptide-Interleukin-8, Granulocyte,Granulocyte Chemotactic Peptide Interleukin 8,Interleukin 8,Lymphocyte-Derived Neutrophil-Activating Peptide,Macrophage-Derived Chemotactic Factor,Monocyte-Derived Neutrophil-Activating Peptide,Neutrophil Activating Peptide, Lymphocyte Derived,Neutrophil Activating Peptide, Monocyte Derived,Neutrophil Chemotactic Factor,Neutrophil-Activating Peptide, Anionic,Peptide, Anionic Neutrophil-Activating
D044463 Receptor, PAR-1 A thrombin receptor subtype that couples to HETEROTRIMERIC GTP-BINDING PROTEINS resulting in the activation of a variety of signaling mechanisms including decreased intracellular CYCLIC AMP, increased TYPE C PHOSPHOLIPASES and increased PHOSPHOLIPASE A2. PAR-1 Receptor,Protease-Activated Receptor 1,PAR1 Receptor,Proteinase-Activated Receptor 1,PAR 1 Receptor,Protease Activated Receptor 1,Proteinase Activated Receptor 1,Receptor, PAR 1,Receptor, PAR1

Related Publications

Martin Scholz, and Jens-Uwe Vogel, and Gerold Höver, and Ruslan Kotchetkov, and Jaroslav Cinatl, and Hans Wilhelm Doerr, and Jindrich Cinatl
April 1998, Clinical and experimental immunology,
Martin Scholz, and Jens-Uwe Vogel, and Gerold Höver, and Ruslan Kotchetkov, and Jaroslav Cinatl, and Hans Wilhelm Doerr, and Jindrich Cinatl
May 2003, Investigative ophthalmology & visual science,
Martin Scholz, and Jens-Uwe Vogel, and Gerold Höver, and Ruslan Kotchetkov, and Jaroslav Cinatl, and Hans Wilhelm Doerr, and Jindrich Cinatl
June 2007, Investigative ophthalmology & visual science,
Martin Scholz, and Jens-Uwe Vogel, and Gerold Höver, and Ruslan Kotchetkov, and Jaroslav Cinatl, and Hans Wilhelm Doerr, and Jindrich Cinatl
March 1992, Experimental eye research,
Martin Scholz, and Jens-Uwe Vogel, and Gerold Höver, and Ruslan Kotchetkov, and Jaroslav Cinatl, and Hans Wilhelm Doerr, and Jindrich Cinatl
August 1989, Current eye research,
Martin Scholz, and Jens-Uwe Vogel, and Gerold Höver, and Ruslan Kotchetkov, and Jaroslav Cinatl, and Hans Wilhelm Doerr, and Jindrich Cinatl
April 2006, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology,
Martin Scholz, and Jens-Uwe Vogel, and Gerold Höver, and Ruslan Kotchetkov, and Jaroslav Cinatl, and Hans Wilhelm Doerr, and Jindrich Cinatl
February 1995, Immunology,
Martin Scholz, and Jens-Uwe Vogel, and Gerold Höver, and Ruslan Kotchetkov, and Jaroslav Cinatl, and Hans Wilhelm Doerr, and Jindrich Cinatl
April 1990, The American journal of pathology,
Martin Scholz, and Jens-Uwe Vogel, and Gerold Höver, and Ruslan Kotchetkov, and Jaroslav Cinatl, and Hans Wilhelm Doerr, and Jindrich Cinatl
April 2009, Molecular immunology,
Martin Scholz, and Jens-Uwe Vogel, and Gerold Höver, and Ruslan Kotchetkov, and Jaroslav Cinatl, and Hans Wilhelm Doerr, and Jindrich Cinatl
January 2015, Investigative ophthalmology & visual science,
Copied contents to your clipboard!