Expression of high levels of nitrobenzylthioinosine-sensitive nucleoside transport in cultured human choriocarcinoma (BeWo) cells. 1992

C E Boumah, and D L Hogue, and C E Cass
Department of Biochemistry, University of Alberta, Edmonton, Canada.

We have examined binding of [3H]nitrobenzylthioinosine (NBMPR) and influx of [3H]thymidine in adherent cultures of human choriocarcinoma (BeWo) cells and, for comparison, cervical-carcinoma (HeLa) cells. Specific association of NBMPR with BeWo cells at 22 degrees C required 1.5 h to reach an equilibrium between free and bound ligand, whereas association with HeLa cells required 20-30 min. Scatchard analysis of NBMPR binding to low-density cultures of BeWo cells revealed a total of 27 x 10(6) sites per cell, consisting of two distinct populations that differed in their affinities for NBMPR. One population bound NBMPR with 'high' affinity (Bmax.1 15.0 pmol/10(6) cells; Kd1 0.6 nM) and the other, larger, population bound NBMPR with 'low' affinity (Bmax.2 29.0 pmol/10(6) cells; Kd2 14.5 nM). By contrast, HeLa cells possessed only 4.1 x 10(5) sites per cell, and these sites all bound NBMPR with the same affinity (Bmax. 0.7 pmol/10(6) cells; Kd 0.5 nM). Interaction of NBMPR with both populations of sites in BeWo cells could be blocked by nitrobenzylthioguanosine (NBTGR), dilazep or dipyridamole. Concentration-effect relationships for dilazep inhibition of binding of 1 nM- and 25 nM-NBMPR to BeWo cells were monophasic, with virtually complete inhibition achieved at 0.1 microM and 1 microM respectively. Plasma-membrane preparations from BeWo cells also had high numbers of NBMPR-binding sites, and u.v. irradiation of site-bound [3H]NBMPR in such preparations labelled polypeptides that migrated in electrophoretograms as a broad band with a peak M(r) of 60,000. The concentration-effect relationship for NBMPR inhibition of thymidine transport by BeWo cells was biphasic, with an IC50 for inhibition of the 'NBMPR-sensitive' component of 1.6 nM and a substantial (15-20%) component of flux that was not inhibited by 10 microM-NBMPR and was thus 'NBMPR-insensitive'. Vmax. values for thymidine transport by BeWo cells were 20-30-fold larger than the corresponding values for transport by HeLa cells. Elimination of the Na+ gradient had no effect on initial rates of thymidine fluxes measured in either the presence or the absence of NBMPR. Our results demonstrate that BeWo cells have an unusually large capacity for NBMPR-sensitive nucleoside transport, apparently resulting from high levels of expression of 'erythrocyte-like' transport elements, identified by their high-affinity interaction with NBMPR. The relationship of the low-affinity binding sites to NBMPR-sensitive transporter elements is uncertain.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002822 Choriocarcinoma A malignant metastatic form of trophoblastic tumors. Unlike the HYDATIDIFORM MOLE, choriocarcinoma contains no CHORIONIC VILLI but rather sheets of undifferentiated cytotrophoblasts and syncytiotrophoblasts (TROPHOBLASTS). It is characterized by the large amounts of CHORIONIC GONADOTROPIN produced. Tissue origins can be determined by DNA analyses: placental (fetal) origin or non-placental origin (CHORIOCARCINOMA, NON-GESTATIONAL). Choriocarcinomas
D004586 Electrophoresis An electrochemical process in which macromolecules or colloidal particles with a net electric charge migrate in a solution under the influence of an electric current. Electrophoreses
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

C E Boumah, and D L Hogue, and C E Cass
September 1986, Journal of cellular physiology,
C E Boumah, and D L Hogue, and C E Cass
June 1985, Biochimica et biophysica acta,
C E Boumah, and D L Hogue, and C E Cass
April 1992, Biochimica et biophysica acta,
C E Boumah, and D L Hogue, and C E Cass
December 1986, Molecular pharmacology,
C E Boumah, and D L Hogue, and C E Cass
January 2002, Placenta,
Copied contents to your clipboard!