| D008297 |
Male |
|
Males |
|
| D004435 |
Eating |
The consumption of edible substances. |
Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes |
|
| D005746 |
Gastric Emptying |
The evacuation of food from the stomach into the duodenum. |
Emptying, Gastric,Emptyings, Gastric,Gastric Emptyings |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D000821 |
Animal Feed |
Foodstuff used especially for domestic and laboratory animals, or livestock. |
Fodder,Animal Feeds,Feed, Animal,Feeds, Animal,Fodders |
|
| D012527 |
Satiation |
Full gratification of a need or desire followed by a state of relative insensitivity to that particular need or desire. |
Satiations |
|
| D012844 |
Sincalide |
An octapeptide hormone present in the intestine and brain. When secreted from the gastric mucosa, it stimulates the release of bile from the gallbladder and digestive enzymes from the pancreas. |
CCK-8,Cholecystokinin Octapeptide,CCK-OP,Cholecystokinin Pancreozymin C-Terminal Octapeptide,H-Asp-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2,Kinevac,OP-CCK,SQ-19,844,SQ-19844,Syncalide,Cholecystokinin Pancreozymin C Terminal Octapeptide,SQ 19,844,SQ 19844,SQ19,844,SQ19844 |
|
| D012965 |
Sodium Chloride |
A ubiquitous sodium salt that is commonly used to season food. |
Sodium Chloride, (22)Na,Sodium Chloride, (24)NaCl |
|
| D015398 |
Signal Transduction |
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. |
Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal |
|
| D016194 |
Receptors, N-Methyl-D-Aspartate |
A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. |
N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate |
|