Airway hyperresponsiveness to bradykinin induced by allergen challenge in actively sensitised Brown Norway rats. 2004

K M Ellis, and C Cannet, and L Mazzoni, and J R Fozard
Research Department, Novartis Institute for Biomedical Research, 4002 Basel, Switzerland.

The mechanism(s) of bradykinin-induced bronchoconstriction was investigated in the Brown Norway (BN) rat model of allergic asthma. Bronchoconstrictor responses to i.v. bradykinin in BN rats were maximally augmented 24 h following challenge with allergen and declined at later time points. Histological evaluation of the inflammatory status of the lungs after ovalbumin (OA) challenge showed a marked inflammatory response, which was maximal at 24 h and declined thereafter. However, pretreatment with budesonide did not inhibit the augmented bronchoconstrictor response to bradykinin 24 h after allergen challenge. The selective B1 receptor agonist, Lys-[desArg9]-BK had no bronchoconstrictor effects, whereas the selective B2 receptor antagonist, HOE 140, abolished the response to bradykinin in OA-challenged animals. The augmented response to bradykinin was not affected by methysergide, indomethacin, disodium cromoglycate, iralukast, the 5-lipoxygenase inhibitor, CGS8515, or the NK2 receptor antagonist, SR48968. It was, however, partially inhibited by atropine both in saline- and OA-challenged animals. Pretreatment with captopril and thiorphan markedly potentiated responses to bradykinin both in saline- and OA-challenged animals. Thus, augmentation of the bronchoconstrictor response to bradykinin occurs in actively sensitised BN rats 24 h after challenge with OA and is associated with marked pulmonary inflammation. The response is entirely B2 receptor mediated and approximately 50% of the response is cholinergic. However, mast cell activation, the products of the cyclooxygenase or 5-lipoxygenase pathways and tachykinins are not involved. Peptidase inhibition mimics the effect of allergen challenge on the bronchoconstrictor response to bradykinin and it remains possible that the mechanism of the augmented response to bradykinin following allergen challenge involves downregulation of peptidase activity as a consequence of the inflammatory response.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D008407 Mast Cells Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR. Basophils, Tissue,Basophil, Tissue,Cell, Mast,Cells, Mast,Mast Cell,Tissue Basophil,Tissue Basophils
D010047 Ovalbumin An albumin obtained from the white of eggs. It is a member of the serpin superfamily. Serpin B14
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D011914 Rats, Inbred BN An inbred strain of rat that is widely used in a variety of research areas such as the study of ASTHMA; CARCINOGENESIS; AGING; and LEUKEMIA. Rats, Inbred Brown Norway,Rats, BN,BN Rat,BN Rat, Inbred,BN Rats,BN Rats, Inbred,Inbred BN Rat,Inbred BN Rats,Rat, BN,Rat, Inbred BN
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan

Related Publications

K M Ellis, and C Cannet, and L Mazzoni, and J R Fozard
April 2001, British journal of pharmacology,
K M Ellis, and C Cannet, and L Mazzoni, and J R Fozard
July 2003, Naunyn-Schmiedeberg's archives of pharmacology,
K M Ellis, and C Cannet, and L Mazzoni, and J R Fozard
December 1991, The Journal of allergy and clinical immunology,
K M Ellis, and C Cannet, and L Mazzoni, and J R Fozard
December 2001, European journal of pharmacology,
K M Ellis, and C Cannet, and L Mazzoni, and J R Fozard
July 1994, International archives of allergy and immunology,
K M Ellis, and C Cannet, and L Mazzoni, and J R Fozard
May 2007, Journal of inflammation (London, England),
K M Ellis, and C Cannet, and L Mazzoni, and J R Fozard
May 2002, British journal of pharmacology,
K M Ellis, and C Cannet, and L Mazzoni, and J R Fozard
December 1998, American journal of respiratory and critical care medicine,
K M Ellis, and C Cannet, and L Mazzoni, and J R Fozard
July 1993, Journal of applied physiology (Bethesda, Md. : 1985),
K M Ellis, and C Cannet, and L Mazzoni, and J R Fozard
November 1992, Agents and actions,
Copied contents to your clipboard!